Skip to main content
Log in

Combustion kinetics of swine manure and algal solids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, combustion kinetics of swine manure as well as algae grown using swine manure wastewater were investigated. Four heating rates (1, 5, 10, and 20 K min−1) were used to determine combustion kinetics using thermogravimetry. Swine manure solids showed higher carbon concentration (10.6 %) and hydrogen concentration (18.8 %) as well as energy content (14.2 %) than algal biomass solids. Each feedstock showed a distinct decomposition profile that increasingly shifted with increasing the heating rate. The combustion kinetics parameters were determined using Kissinger, Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS) methods. Differences in activation energy values between FWO and KAS were below 2 % throughout the entire conversion. Average activation energy for swine manure and algae, using FWO, was 172.6 and 165.1 kJ mol−1, respectively. Combustion of three blends of algae–swine manure solids was studied at 10 K min−1 with no synergistic effects observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci. 2008;363:789–813.

    Article  CAS  Google Scholar 

  2. Bernet N, Béline F. Challenges and innovations on biological treatment of livestock effluents. Bioresour Technol. 2009;100:5431–6.

    Article  CAS  Google Scholar 

  3. Wnetrzak R, Kwapinski W, Peters K, Sommer S, Jensen L, Leahy J. The influence of the pig manure separation system on the energy production potentials. Bioresour Technol. 2013;136:502–8.

    Article  CAS  Google Scholar 

  4. Sommer SG, Olesen JE, Petersen SO, Weisbjerg MR, Valli L, Rodhe L, Béline F. Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones. Global Change Biol. 2009;15:2825–37.

    Article  Google Scholar 

  5. Hoffmann JP. Wastewater treatment with suspended and nonsuspended algae. J Phycol. 1998;34:757–63.

    Article  CAS  Google Scholar 

  6. Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 2010;162:1174–86.

    Article  CAS  Google Scholar 

  7. Kebede-Westhead E, Pizarro C, Mulbry WW, Wilkie AC. Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy manure. J Phycol. 2003;39:1275–82.

    Article  Google Scholar 

  8. Kebede-Westhead E, Pizarro C, Mulbry WW. Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J Appl Phycol. 2006;18:41–6.

    Article  Google Scholar 

  9. Mulbry W, Kondrad S, Buyer J. Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol. 2008;20:1079–85.

    Article  Google Scholar 

  10. Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–65.

    Article  CAS  Google Scholar 

  11. Biller P, Ross AB. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol. 2011;102:215–25.

    Article  CAS  Google Scholar 

  12. Sharara M, Sadaka S. Thermogravimetric analysis of swine manure solids obtained from farrowing, and growing-finishing farms. J Sustain Bioenergy Syst. 2014;4:75–86.

    Article  Google Scholar 

  13. Otero M, Sánchez ME, Gómez X. Co-firing of coal and manure biomass: a TG–MS approach. Bioresour Technol. 2011;102:8304–9.

    Article  CAS  Google Scholar 

  14. Maddi B, Viamajala S, Varanasi S. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol. 2011;102:11018–26.

    Article  CAS  Google Scholar 

  15. AgrawalA Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol. 2013;128:72–80.

    Article  CAS  Google Scholar 

  16. Sharara MA, Holeman N, Sadaka SS, Costello TA. Pyrolysis kinetics of algal consortia grown using swine manure wastewater. Bioresour Technol. 2014;169:658–66.

    Article  CAS  Google Scholar 

  17. Sanchez-Silva L, López-González D, Garcia-Minguillan A, Valverde J. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol. 2013;130:321–31.

    Article  CAS  Google Scholar 

  18. Mészáros E, Várhegyi G, Jakab E, Marosvölgyi B. Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels. 2004;18(2):497–507.

    Article  CAS  Google Scholar 

  19. Moltó J, Font R, Conesa JA, Martín-Gullón I. Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. J Anal Appl Pyrol. 2006;76(1):124–31.

    Article  CAS  Google Scholar 

  20. Liu N, Chen H, Shu L, Zong R, Yao B, Statheropoulos M. Gaussian smoothing strategy of thermogravimetric data of biomass materials in an air atmosphere. Ind Eng Chem Res. 2004;43:4087–96.

    Article  CAS  Google Scholar 

  21. Mothé CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113(2):497–505.

    Article  CAS  Google Scholar 

  22. Pilawka R, Paszkiewicz S, Rosłaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2014;115(1):451–60.

    Article  CAS  Google Scholar 

  23. Hetmańczyk Ł, Hetmańczyk J. Comparison of vibrational dynamics, thermal behaviour, and phase transition in [Ni (NH3) 4](ReO4) 2 and [Ni (NH3) 6](ReO4) 2. J Therm Anal Calorim. 2015;119(2):1415–28.

    Article  CAS  Google Scholar 

  24. Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114(2):519–29.

    Article  CAS  Google Scholar 

  25. Rybiński P, Janowska G, Dobrzyńska R, Kucharska A. Effect of halogenless flame retardants on the thermal properties, flammability, and fire hazard of cross-linked EVM/NBR rubber blends. J Therm Anal Calorim. 2014;115(1):771–82.

    Article  CAS  Google Scholar 

  26. Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Qin S. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J Therm Anal Calorim. 2013;111(3):1685–90.

    Article  CAS  Google Scholar 

  27. Samson R, Mehdi B. Strategies to reduce the ash content in perennial grasses. Proc BioEnergy 1998;98:1124–31.

  28. Sheng C, Azevedo J. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 2005;28:499–507.

    Article  CAS  Google Scholar 

  29. Scragg A, Illman A, Carden A, Shales S. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy. 2002;23:67–73.

    Article  CAS  Google Scholar 

  30. Petersen SO, Lind A, Sommer SG. Nitrogen and organic matter losses during storage of cattle and pig manure. J Agric Sci. 1998;130:69–79.

    Article  Google Scholar 

  31. Kok MV, Özgür E. Thermal analysis and kinetics of biomass samples. Fuel Process Technol. 2013;106:739–43.

    Article  CAS  Google Scholar 

  32. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel. 2012;95:305–11.

    Article  CAS  Google Scholar 

  33. Wu H, Hanna MA, Jones DD. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Manag Res. 2012;30:1066–71.

    Article  CAS  Google Scholar 

  34. Ali SAM, Razzak SA, Hossain MM. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass. Bioresour Technol. 2015;175:569–77.

    Article  CAS  Google Scholar 

  35. Kirtania K, Bhattacharya S. Pyrolysis kinetics and reactivity of algae–coal blends. Biomass Bioenergy. 2013;55:291–8.

    Article  CAS  Google Scholar 

  36. Goldfarb JL, Liu C. Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics. Bioresour Technol. 2013;149:208–15.

    Article  CAS  Google Scholar 

  37. Otero M, Sanchez M, García A, Morán A. Simultaneous thermogravimetric-mass spectrometric study on the co-combustion of coal and sewage sludges. J Therm Anal Calorim. 2006;86:489–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript is a part of a USDA-NIFA project No.2010-04269 titled “Integrated Resource Management Tool to Mitigate the Carbon Footprint of Swine Production in the US.” The authors would like to thank the funding agency for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sammy S. Sadaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharara, M.A., Sadaka, S.S., Costello, T.A. et al. Combustion kinetics of swine manure and algal solids. J Therm Anal Calorim 123, 687–696 (2016). https://doi.org/10.1007/s10973-015-4970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4970-9

Keywords

Navigation