Skip to main content
Log in

Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites

Thermal and mechanical characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Vapor-grown carbon nanofiber (CNF)-modified soy polyol-based polyurethane (PU) nanocomposites with different hydroxyl value of polyols (OH) were synthesized. The glass transition, thermal stability, mechanical properties, and morphology of the PU nanocomposites were characterized through differential scanning calorimetry, thermogravimetry, universal test machine, and scanning electron microscopy. The addition of CNFs increased the glass transition temperature as well as significantly improved tensile strength and Young’s modulus of PU nanocomposites. Meanwhile, thermal and mechanical properties of PU composites were influenced by the different hydroxyl value of polyols due to those different structures. In particular, in the case of 2 mass% CNF addition in PU derived from soy polyol with the OH number of 164 mg KOH g−1, 20.8 °C improvement in the glass transition temperature, 115 % increment in tensile strength, and nearly eightfold increase in Young’s modulus were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B. From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev. 2012;52:38–79.

    Article  CAS  Google Scholar 

  2. Lligadas G, Ronda J, Galia M, Cadiz V. Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules. 2010;11:2825–35.

    Article  CAS  Google Scholar 

  3. Wang CS, Chen XY, Chen JQ, Liu CG, Xie HF, Cheng RS. Synthesis and characterization of novel polyurethane acrylates based on soy polyols. J Appl Polym Sci. 2011;122:2449–55.

    Article  CAS  Google Scholar 

  4. Wang CS, Wang YT, Liu WJ, Yin HY, Yuan ZR, Wang QJ, et al. Natural fibrous nanoclay reinforced soy polyol-based polyurethane. Mater Lett. 2012;78:85–7.

    Article  CAS  Google Scholar 

  5. Wang CS, Chen XY, Xie HF, Cheng RS. Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane. Compos Part A. 2011;41:1620–6.

    Article  CAS  Google Scholar 

  6. Jin H, Zhang YG, Wang CS, Sun YF, Yuan ZR, Pan YQ, et al. Thermal, mechanical and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2014;117:773–81.

    Article  CAS  Google Scholar 

  7. Zhang CQ, Madbouly SA, Kessler MR. Biobased polyurethanes prepared from different vegetable oils. ACS Appl Mater Interfaces 2015;7:1226–33.

  8. Lin B, Yang L, Dai H, Hou Q, Zhang L. Thermal analysis of soybean oil based polyols. J Therm Anal Calorim. 2009;95:977–83.

  9. Ni BL, Yang LT, Wang CS, Wang LY, Finlow DE. Synthesis and thermal properties of soybean oil-based waterborne polyurethane coatings. J Therm Anal Calorim. 2010;100:239–46.

    Article  CAS  Google Scholar 

  10. Wang CS, Ding L, Wu QS, Liu F, Wei J, Xie HF, et al. Soy polyol-based polyurethane modified by raw and silylated palygorskite. Ind Crop Prod. 2014;57:29–34.

    Article  CAS  Google Scholar 

  11. Qiu SL, Wang CS, Wang YT, Liu CG, Chen XY, Xie HF, et al. Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Express Polym Lett. 2011;5:809–18.

    Article  CAS  Google Scholar 

  12. Liu CG, Wang ZM, Huang YA, Xie HF, Liu ZS, Chen Y, et al. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method. RSC Adv. 2013;3:22380–8.

    Article  CAS  Google Scholar 

  13. Liu WJ, Xiao J, Wang CS, Yin HY, Xie HF, Cheng RS. Synthesis of polystyrene-grafted-graphene hybrid and its application in electrochemical sensor of dopamine. Mater Lett. 2013;100:70–3.

    Article  CAS  Google Scholar 

  14. Wang CS, Jin QC, Wang YT, Yin HY, Xie HF, Cheng RS. A green route to prepare graphite oxide–poly(acrylic acid) and –poly(acrylamide) hybrids under γ-ray irradiation. Mater Lett. 2012;68:280–2.

    Article  CAS  Google Scholar 

  15. Wang YT, Wang CS, Yin HY, Wang LL, Xie HF, Cheng RS. Carboxyl-terminated butadiene–acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett. 2012;6:719–28.

    Article  CAS  Google Scholar 

  16. Zhang JS, Wang YT, Wang XS, Ding GW, Pan YQ, Xie HF, et al. Effects of amino-functionalized carbon nanotubes on the properties of amine-terminated butadiene-acrylonitrile rubber-toughened epoxy resins. J Appl Polym Sci. 2014;131:6687–93.

    Google Scholar 

  17. Li L, Li J, Lukehart C. Graphitic carbon nanofiber-poly (acrylate) polymer brushes as gas sensors. Sensor Actuat B Chem. 2008;130:783–8.

    Article  CAS  Google Scholar 

  18. Li Y, Guo B, Ji L, Lin Z, Xu G, Liang Y, et al. Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon. 2013;51:185–94.

    Article  CAS  Google Scholar 

  19. Shao L, Xing G, He L, Chen J, Xie H, Liang X. Sulfonic groups functionalized preoxidated polyacrylonitrile nanofibers and its catalytic applications. Appl Catal A Gen. 2012;443–444:133–7.

    Article  CAS  Google Scholar 

  20. Xie HF, Liu BH, Sun Q, Yuan ZR, Shen JY, Cheng RS. Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. J Appl Polym Sci. 2005;96:329–35.

    Article  CAS  Google Scholar 

  21. Wu Q, Bao JW, Zhang C, Liang R, Wang B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. J Therm Anal Calorim. 2011;103:237–42.

    Article  CAS  Google Scholar 

  22. Barick AK, Tripathy DK. Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Compos Part A. 2010;41:1471–82.

    Article  CAS  Google Scholar 

  23. Tsang M, Chun YW, Im YM, Khang D, Webster TJ. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions. Tissue Eng Part A. 2010;17:1879–89.

    Article  CAS  Google Scholar 

  24. Menczel JD, Prime RB, Gallagher PK. Introduction. In: Menczel JD, Prime RB, editors. Thermal analysis of polymers: fundamentals and applications. New Jersey: Wiley; 2009. p. 1–6.

    Chapter  Google Scholar 

  25. Zhang YG, Pan XY, Sun YF, Xu W, Pan YQ, Xie HF, et al. Flame retardancy, thermal, and mechanical properties of mixed flame retardant modified epoxy asphalt binders. Constr Build Mater. 2014;68:62–7.

    Article  Google Scholar 

  26. Xie HF, Liu BH, Yuan ZR, Shen JY, Cheng RS. Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry. J Polym Sci Polym Phys. 2004;42:3701–12.

    Article  CAS  Google Scholar 

  27. Yin HY, Zhang YG, Sun YF, Xu W, Yu DE, Xie HF, et al. Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct. 2015. doi:10.1617/s11527-014-0442-0.

    Google Scholar 

  28. Sun YF, Zhang YG, Xu K, Xu W, Yu DE, Zhu L, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes. J Appl Polym Sci. 2015;132:41694.

    Google Scholar 

  29. Wang CS, Chen XY, Xie HF, Cheng RS. Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane. Composites Part A Appl Sci Manufactur. 2011;41:1620–6.

    Article  CAS  Google Scholar 

  30. Wang CS, Wu QS, Liu F, An J, Lu R, Xie HF, et al. Synthesis and characterization of soy polyol-based polyurethane nanocomposites reinforced with silylated palygorskite. Appl Clay Sci. 2014;101:246–52.

    Article  CAS  Google Scholar 

  31. Dai HH, Yang LT, Lin B, Wang CS, Shi G. Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1,2-ethanediol and 1,2-propanediol. J Am Oil Chem Soc. 2009;86:261–7.

    Article  CAS  Google Scholar 

  32. Wang CS, Yang LT, Ni BL, Shi G. Polyurethane networks from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, glycol, and 1,2-propanediol. J Appl Polym Sci. 2009;114:125–31.

    Article  CAS  Google Scholar 

  33. Zhu JH, Wei SY, Ryu J, Budhathoki M, Liang G, Guo ZH. In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Sci. 2010;20:4937–48.

    CAS  Google Scholar 

  34. Xie HF, Liu BH, Yang H, Wang ZL, Shen JY, Cheng RS. Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4′-diaminodiphenylmethane/4,4′-diaminodiphenylsulfone epoxy composites. J Appl Polym Sci. 2006;100:295–8.

    Article  CAS  Google Scholar 

  35. Yin HY, Jin H, Wang CS, Sun YF, Yuan ZR, Xie HF, et al. Thermal, damping and mechanical properties of thermosetting epoxy modified asphalts. J Therm Anal Calorim. 2014;115:1073–80.

    Article  CAS  Google Scholar 

  36. Lu YS, Larock RC. Soybean-oil-based waterborne polyurethane dispersions: Effects of polyol functionality and hard segment content on properties. Biomacromolecules. 2008;9:3332–40.

    Article  CAS  Google Scholar 

  37. Shi L, Li ZM, Xie BH, Wang JH, Tian CR, Yang MB. Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polym Int. 2006;55:862–71.

    Article  CAS  Google Scholar 

  38. Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A, et al. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.

  39. Kumar S, Mahaling RN, Reddy CS, Das CK, Pandey KN, Srivastava RB, et al. Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites. Mater Sci Eng B. 2007;141:61–70.

    Article  CAS  Google Scholar 

  40. Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon. 2005;43:1378–85.

    Article  CAS  Google Scholar 

  41. Demjen Z, Pukanszky B, Nagy J. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Compos Pt A-Appl Sci Manuf. 1998;29:323–9.

    Article  Google Scholar 

  42. Choi YK, Sugimoto K, Song SM, Gotoh Y, Ohkoshi Y, Endo M. Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon. 2005;43:2199–208.

    Article  CAS  Google Scholar 

  43. Kumar R, Isayev AI. Thermotropic LCP/CNF nanocomposites prepared with aid of ultrasonic waves. Polymer. 2010;51:3503–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) and the Fundamental Research Funds for the Central Universities (20620140066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, K., Wang, C. et al. Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites. J Therm Anal Calorim 123, 2459–2468 (2016). https://doi.org/10.1007/s10973-015-4690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4690-1

Keywords

Navigation