Skip to main content
Log in

Investigation on the thermal behavior of β-blockers antihypertensives atenolol and nadolol using TG/DTG, DTA, DSC, and TG–FTIR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behavior of β-blocker antihypertensives nadolol and atenolol was investigated using TG/DTG, DTA, and DSC, under dynamic nitrogen and air atmosphere. Nadolol decomposed in a single mass loss step between 196 and 353 °C, after melting at 128.0 °C. In air, an additional event related to the burning of carbonaceous material was observed. Under nitrogen atenolol decomposed also in a single step from 191.8 to 900 °C. However the DTG revealed that this decomposition splits in two successive events resulting in a residue of 17.2 % at the end of the run, with a melting peak at 153.1 °C. In air, an additional step referent to the burning of carbonaceous residue can be seen. Although both presented melting events, only atenolol crystallized on cooling. Evolved gas analysis by TG–FTIR revealed that nadolol decomposes via terc-butylamine releasing, while atenolol loses ammonia in a nonpreviously reported dimerization reaction after melting with a consecutive isopropylamine releasing. A tentative thermal behavior mechanism is presented for both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hardman JG, Limbird LE, Gilman AG. The pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001 Goodman & Gilman’s.

    Google Scholar 

  2. del Pozo JG, Sevillano ED, de Abajo FJ. Use of antihypertensive drugs in Spain (1995–2001). Rev Esp Cardiol. 2004;57:241–9.

    Google Scholar 

  3. www.sbh.org.br/imprensa/anti_hipertensivos.pdf. Accessed Oct 2011.

  4. Wendlandt WW. Thermal analysis. In: Elving PJ, Winefordner JD, editors. vol 19, 3rd ed., New York: Wiley; 1986.

  5. Lever T, Hains P, Rouquerol J, Charsley EL, Eckeren PV, Burlett DJ. ICTAC nomenclature of thermal analysis (IUPAC) recommendations. Pure Appl Chem. 2014;86:545–53.

    Article  CAS  Google Scholar 

  6. Llina`s A, Goodman JM. Polymorph control: past, present and future. Drug Discov Today. 2008;13:198–210.

    Article  Google Scholar 

  7. Nunes RS, Semaan FS, Riga AT, Cavalheiro ETG. Thermal behavior of verapamil and its association with excipients. J Therm Anal Calorm. 2009;97:349–53.

    Article  CAS  Google Scholar 

  8. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal. 2011;55:618–44.

    Article  CAS  Google Scholar 

  9. Ghugare P, Dongre V, Karmuse P, Rana R, Singh D, Kumar A, Filmwala Z. Solid state investigation and characterization of the polymorphic and pseudopolymorphic forms of indapamide. J Pharm Biomed Anal. 2010;51:532–40.

    Article  CAS  Google Scholar 

  10. Canotilho J, Castro RAE, Rosado MTS, Nunes SCC, Cruz MSC, Redinha JS. Thermal analysis and crystallization from melts β adrenergic compounds. J Therm Anal Calorim. 2010;100:423–9.

    Article  CAS  Google Scholar 

  11. Krill SL, Lau KY, Plachy WZ, Rehfeld SJ. Penetration of dimyristoylphosphatidylcholine monolayers and bilayers by model β-blocker agents of varying lipophilicity. J Pharm Sci. 1998;87:751–6.

    Article  CAS  Google Scholar 

  12. Domanska U, Pobdkwska A, Pelczarska A, Winiarska-Tusznio M, Gierycz P. Solubility and pKa of select pharmaceuticals in water, ethanol and 1-octanol. J Chem Thermodyn. 2010;42:1465–72.

    Article  CAS  Google Scholar 

  13. Grosvenor MP, Lofroth J. Interaction between bile salts and β-adrenoceptor antagonists. Pharm Res. 1995;12:682–6.

    Article  CAS  Google Scholar 

  14. Wesolowski M, Rojek B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J Therm Anal Calorim. 2013;113:169–77.

    Article  CAS  Google Scholar 

  15. Pereira RN, Valente BR, Cruz AP, Foppa T, Murakami FS, Silva MAS. Thermoanalytical study of atenolol and commercial tablets. Lat Am J Pharm. 2007;26:382–6.

    CAS  Google Scholar 

  16. Marini A, Berbenni V, Pegoretti M, Bruni G, Cofrancesco P, Sinistri C, Villa M. Drug-excipient compatibility studies by physico-chemical techniques. The case of atenolol. J Therm Anal Calorim. 2003;73:547–61.

    Article  CAS  Google Scholar 

  17. Abou-Sckkina MM, El-Reis MA, Aly FA, Wasse AA. Gamma-promotion of thermal stability and radiolysis mechanism of atenolol beta-blocker. Thermochim Acta. 2002;383:37–44.

    Article  Google Scholar 

  18. Pyramides G, Robinson JW, Zito SW. The combined use of DSC and TGA for the thermal-analysis of atenolol tablets. J Pharm Biomed Anal. 1995;13:103–10.

    Article  CAS  Google Scholar 

  19. Ficarra R, Ficarra P, Di Bella MR, Raneri D, Tommasini S, Calabrò ML, Gamberini MC, Rustichelli C. Study of beta-blockers/beta-cyclodextrins inclusion complex by NMR, DSC, X-ray and SEM investigation. J Pharm Biomed Anal. 2000;23:33–40.

    Article  CAS  Google Scholar 

  20. Silva ACM, Gálico DA, Guerra RB, Legendre AO, Rinaldo D, Galhiane MS, Bannach G. Study of some volatile compound evolved from the thermal decomposition os atenolol. J Therm Anal Calorim. 2014;115:2517–20.

    Article  CAS  Google Scholar 

  21. Jain A, Yalkowsky SH. Estimation of melting points of organic compounds-II. J Pharm Sci. 2006;95:2562–618.

    Article  CAS  Google Scholar 

  22. Nordstrom FL, Rasmuson AC. Prediction of solubility curves and melting properties of organics and pharmaceutical compounds. Eur J Pharm Sci. 2009;36:330–44.

    Article  Google Scholar 

  23. Nicolet EPA Vapor Phase database. Omnic 8.0 software. Thermo Scientific.

  24. HR Nicolet Sampler Library. Omnic 8.0 software. Thermo Scientific.

  25. Castro RAE. β-1 antagonists selective adrenergic: structure of atenolol. Thesis (Ph.D. in Pharmaceutical Chemistry), Faculty of Pharmacy, University of Coimbra, Coimbra, 2006.

Download references

Acknowledgements

Authors acknowledge the Brazilian Foundations Conselho Nacional de Desenvolvimento Científico (CNPq) e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio à Pesquisa do estado de São Paulo (FAPESP), and Núcleo de Pesquisa em Ciência e Tecnologia de Biorecursos (CiTecBio/NAP’s-PRP/USP) for Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Garcia Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, P.H.O., Ferreira, A.P.G., Machado, L.C.M. et al. Investigation on the thermal behavior of β-blockers antihypertensives atenolol and nadolol using TG/DTG, DTA, DSC, and TG–FTIR. J Therm Anal Calorim 120, 1035–1042 (2015). https://doi.org/10.1007/s10973-014-4357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4357-3

Keywords

Navigation