Skip to main content
Log in

Microstructure characterization and thermal stability of the ball milled iron powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

X-ray diffraction and thermal measurements were used to investigate the microstructural, structural, and thermal properties of nanocrystalline Fe prepared by ball milling process. The crystallite size refinement down to the nanometer scale is accompanied by the increase of the internal level strains and the dislocations density. The lattice distortion is evidenced by the increase of both the lattice parameter and the static Debye–Waller parameter. The grain boundary enthalpy decreases above 12 h of milling. The nanostructured paramagnetic bcc α-Fe domain is extended by about 75 K at the expense of both the magnetic bcc α-Fe and nonmagnetic fcc γ-Fe domains as compared to coarse-grained pure α-Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhu X, Birringer R, Herr U, Gleiter H. X-ray diffraction studies of nanometer- sized crystalline materials. Phys Rev B. 1987;35:9085–90.

    Article  CAS  Google Scholar 

  2. Alleg S, Souilah S, Suñol JJ. Thermal stability of the nanostructured powder mixtures prepared by mechanical alloying. In: Elkordy AA, editor. Applications of calorimetry in a wide context—differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry. Vienna: InTech Publisher; 2013. p. 21–48.

    Google Scholar 

  3. Alleg S, Kartout S, Ibrir M, Azzaza S, Fenineche NE, Suol JJ. Magnetic, structural and thermal properties oft he Finemet-type powders prepared by mechanical alloying. J Phys Chem Sol. 2013;74:550–7.

    Article  CAS  Google Scholar 

  4. Azzaza S, Alleg S, Suñol JJ. Phase transformation in the ball milled Fe31Co31Nb8B30 Powders. Adv Mater Phys Chem. 2013;3:90–100.

    Article  Google Scholar 

  5. Del Bianco L, Hernando A, Fiorani D. Spin-glass-like behavior in nanocrystalline Fe. Phys Stat Sol (a). 2002;189:533–6.

    Article  Google Scholar 

  6. Alleg S, Azzaza S, Bensalem R, Sunol JJ, Khene S, Fillion G. Magnetic and structural studies of mechanically alloyed (Fe50Co50)62Nb8B30 powder mixtures. J Alloys Compd. 2009;482:86–9.

    Article  CAS  Google Scholar 

  7. Haubold T, Krauss W, Gleiter H. EXAFS studies on nanocrystalline tungsten. Phil Mag Lett. 1991;63:245–7.

    Article  CAS  Google Scholar 

  8. Lutterotti L. MAUD CPD. Newsletter (IUCr) 2000; 24.

  9. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2:65.

    Article  CAS  Google Scholar 

  10. Young RA. The Rietveld method. 1st ed. Oxford: Oxford University Press; 1996.

    Google Scholar 

  11. Young RA, Wiles DB. Profile shape functions in Rietveld refinements. J Appl Cryst. 1982;15:430–8.

    Article  CAS  Google Scholar 

  12. Caglioti G, Paoletti A, Ricci FP. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum Methods. 1958;35:223–8.

    Article  Google Scholar 

  13. Popa NC. The (hkl) dependence of diffraction-line broadening caused by strain and size for all laue groups in Rietveld refinement. J Appl Cryst. 1998;31:176–80.

    Article  CAS  Google Scholar 

  14. Popa NC. Texture in Rietveld refinement. J Appl Cryst. 1992;25:611.

    Article  Google Scholar 

  15. Williamson GK, Smallman RE. Dislocation densities in some annealed and cold- worked metals from measurements on the X-ray Debye–Scherrer spectrum. Phil Mag. 1956;1:34–45.

    Article  CAS  Google Scholar 

  16. Ungár T, Dragomir I, Rèvèsz Á, Borbèly A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J Appl Cryst. 1999;32:992–1002.

    Article  Google Scholar 

  17. Borbèly A, Dragomir I, Ribárik G, Ungár T. Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. J Appl Cryst. 2003;36:160–2.

    Article  Google Scholar 

  18. Scardi P, Leoni M. Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J Appl Cryst. 1999;32:671–82.

    Article  CAS  Google Scholar 

  19. Dong YH, Scardi P. MarqX: a new program for whole-powder-pattern fitting. J Appl Cryst. 2000;33:184–9.

    Article  CAS  Google Scholar 

  20. Rèvèsz Á, Ungár T, Borbèly A, Lendvai J. Dislocations and grain size in ball milled iron powder. Nanostruct Mater. 1996;7:779–88.

    Article  Google Scholar 

  21. Mallow TR, Koch CC. Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 1997;45:2177–86.

    Article  Google Scholar 

  22. Guérault H, Greneche JM. Microstructural modeling of nanostructured fluoride powders prepared by mechanical milling. J Phys. 2000;12:4791–8.

    Google Scholar 

  23. Laala-Bouali H, Bentayeb F-Z, Louidi S, Guo X, Tria S, Suñol JJ. X-ray line profile analysis of the ball milled Fe–30Co alloy. Adv Powd Technol. 2013;24:168–74.

    Article  CAS  Google Scholar 

  24. Eckert J, Holzer JC, Kill CE III, Johnson WL. Synthesis and characterization of ball-milled nanocrystalline fcc metals. J Mater Res. 1992;7:1751–61.

    Article  CAS  Google Scholar 

  25. Zhao ZH, Sheng HW, Lu K. Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 2001;49:365–75.

    Article  CAS  Google Scholar 

  26. Slawska-Waniewska A, Grafoute M, Greneche JM. Magnetic coupling and spin structure in nanocrystalline iron powders. J Phys. 2006;18:2235–48.

    CAS  Google Scholar 

  27. Rawers J, Cook D. Influence of attrition milling on nano-grain boundaries. Nanostruct Mater. 1999;11(3):331–42.

    Article  CAS  Google Scholar 

  28. Greneche JM, Ślawska-Waniewska A. About the interfacial zone in nanocrystalline alloys. J Magn Magn Mater. 2000;215–216:264–7.

    Article  Google Scholar 

  29. Delshad Chermahini M, Shokrollahi H. Milling and subsequent thermal annealing effects on the microstructural and magnetic properties of nanostructured Fe90Co10 and Fe65Co35 Powders. J Alloys Compd. 2009;480:161–6.

    Article  Google Scholar 

  30. Zhang K, Alexandrov IV, Lu K. The X-ray diffraction study on a nanocrystalline Cu Processed by Equal-Channel Angular Pressing. Nanostruct Mater. 1997;9:347–50.

    Article  CAS  Google Scholar 

  31. Mhadhbi M, Khitouni M, Azabou M, Kolsi AW. Characterization of Al and Fe nanosized powders synthetized by high energy mechanical milling. Mater Charact. 2008;59:944–50.

    Article  CAS  Google Scholar 

  32. Ram S, Fecht HJ. Millimeter sized ferromagnetic Fe-clusters: Formation by mechanical attrition, microstructure and magnetic properties. Mat Trans JIM. 2000;41:754–60.

    Article  CAS  Google Scholar 

  33. Lu K, Zhao YH. Experimental evidences of lattice distortion in nanocrystalline materials. Nanostruct Mater. 1999;12:559–62.

    Article  Google Scholar 

  34. Krivoglaz M. Theory of X-ray and thermal-neutron scattering by real crystals”. New York: Plenum Press; 1969.

    Google Scholar 

  35. Dubrovinsky LS, Dubrovinskaia NA, Saxena SK, Rekhi S, Le Bihan T. Aggregate shear moduli of iron up to 90 GPa and 1,100 K. J Alloys Compd. 2000;297:156–61.

    Article  CAS  Google Scholar 

  36. Antoszewska M, Wasiak M, GwizdałłaT Sovak P, Moneta M. Thermal induced structural and magnetic transformations in Fe73.5−x Ce x = 0, 3, 5, 7Si13.5B9Nb3Cu1 amorphous alloy. J Therm Anal Calorim. 2014;115:1381–6.

    Article  CAS  Google Scholar 

  37. Lysenko EN, Surzhikov AP, Zhuravkov SP, Vlasov VA, Pustovalov AV, Yavorovsky NA. The oxidation kinetics study of ultrafine iron powders by thermogravimetric analysis. J Therm Anal Calorim. 2014;115:1447–52.

    Article  CAS  Google Scholar 

  38. Fecht HJ. Nanostructured materials: processing, properties and potential applications. In: Koch CC, editor. Noyes publications. Norwich: New York; 2002. p. 73–113.

    Google Scholar 

  39. Speich GR, Schwoeble AJ, Leslie WC. Elastic constants of binary iron-base alloys. Met Trans. 1972;3:2031–7.

    Article  CAS  Google Scholar 

  40. Stern EA, Siegel RW, Newville M, Sanders PG, Haskel D. Are nanophase grain boundaries anomalous? Phys Rev Lett. 1995;75:3874–7.

    Article  CAS  Google Scholar 

  41. Suñol JJ, González A, Escoda L, Vilaró A. Curie temperature in Fe(Ni)Nb based mechanically alloyed materials. J Therm Anal Calorim. 2005;80:257–61.

    Article  Google Scholar 

  42. Lu K. The thermal instability of nanocrystalline Ni–P materials with different grain sizes. Nanostruct Mater. 1993;2:643–52.

    Article  CAS  Google Scholar 

  43. Krill CE, Merzoug F, Krauss W, Birringer R. Magnetic properties of nanocrystalline Gd and W/Gd. Nanostruct Mater. 1997;9:455–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Azzaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzaza, S., Alleg, S. & Suňol, JJ. Microstructure characterization and thermal stability of the ball milled iron powders. J Therm Anal Calorim 119, 1037–1046 (2015). https://doi.org/10.1007/s10973-014-4281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4281-6

Keywords

Navigation