Skip to main content
Log in

Kinetic study on the preparation of silica from rice husk under various pretreatments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recovering silica from rice husks by calcination is an economical and attractive method of manufacturing high value-added products. The pretreatment process plays an important role in the preparation of amorphous silica by influencing both the removal of metallic impurities and further decomposition of organic compounds. In this paper, the pyrolysis kinetics of various pretreatment processes, including water soaking, acid leaching and grinding, were investigated using thermogravimetric analysis. The contributions of various pretreatment to the production of silica can be listed as follows: acid leaching > water soaking > grinding. Acid leaching at 120 °C with an acid concentration of 8 mass% and grinding raw material into 100 mesh was most beneficial to the removal of metallic impurities and thermal decomposition of organic compounds. The Flynn–Wall–Ozawa method was employed to derive the kinetic parameters (activation energy and correlation coefficient). The activation energies were calculated to be in the range of 90–156 kJ mol−1 for rice husks with various pretreatments at different conversion fractions. These results provide useful information for the rational design and scaling up of pretreatment reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations (FAO). World food situation, FAO cereal supply and demand brief. 2014.

  2. Rahhal V, Cabrera O, Talero R, Delgado A. Calorimetry of portland cement with silica fume and gypsum additions. J Therm Anal Cal. 2007;87(2):331–7.

    Article  CAS  Google Scholar 

  3. Kurama S, Kurama H. The reaction kinetics of rice husk based cordierite ceramics. Ceram Int. 2008;34(2):269–72.

    Article  CAS  Google Scholar 

  4. Salavati-Niasari M, Javidi J, Dadkhah M. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application. Comb Chem High Throughput Screen. 2013;16(6):458–62.

    Article  CAS  Google Scholar 

  5. Awizar DA, Othman NK, Jalar A, Daud AR, Rahman IA, Al-Hardan NH. Nanosilicate extraction from rice husk ash as green corrosion inhibitor. Int J Electrochem Sci. 2013;8(2):1759–69.

    CAS  Google Scholar 

  6. Janowska G, Rybiński P, Jantas R. Effect of the modification of silica on thermal properties and flammability of cross-linked butadiene–acrylonitrile rubbers. J Therm Anal Cal. 2007;87(2):511–7.

    Article  CAS  Google Scholar 

  7. Rajamani D, Surender R, Mahendran A, Muthusubramanian S, Vijayakumar C. Bismaleimide/rice husk silica reinforced composites. J Therm Anal Cal. 2013;114(2):883–93.

    Article  CAS  Google Scholar 

  8. Adam F, Appaturi JN, Khanam Z, Thankappan R, Nawi MAM. Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium. Appl Surf Sci. 2013;264:718–26.

    Article  CAS  Google Scholar 

  9. Liou T-H, Yang C-C. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng B. 2011;176(7):521–9.

    Article  CAS  Google Scholar 

  10. Zulkifli NSC, Rahman IA, Mohamad D, Husein A. A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int. 2013;39(4):4559–67.

    Article  CAS  Google Scholar 

  11. Ma X, Zhou B, Gao W, Qu Y, Wang L, Wang Z, et al. A recyclable method for production of pure silica from rice hull ash. Powder Technol. 2012;217:497–501.

    Article  CAS  Google Scholar 

  12. Kapur PC. Production of reactive bio-silica from the combustion of rice husk in a tube-in-basket (TiB) burner. Powder Technol. 1985;44(1):63–7.

    Article  CAS  Google Scholar 

  13. Umeda J, Kondoh K. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Ind Crop Prod. 2010;32(3):539–44.

    Article  CAS  Google Scholar 

  14. Chen HR, Wang WX, Martin JC, Oliphant AJ, Doerr PA, Xu JF, et al. Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass. ACS Sustain Chem Eng. 2013;1(2):254–9.

    Article  CAS  Google Scholar 

  15. Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L. Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces. 2011;4(2):977–81.

    Article  Google Scholar 

  16. Shen J, Liu X, Zhu S, Zhang H, Tan J. Effects of calcination parameters on the silica phase of original and leached rice husk ash. Mater Lett. 2011;65(8):1179–83.

    Article  CAS  Google Scholar 

  17. Liou T-H. Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A. 2004;364(1–2):313–23.

    Article  Google Scholar 

  18. Ang TN, Ngoh GC, Chua ASM. Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. Bioresour Technol. 2013;135:116–9.

    Article  CAS  Google Scholar 

  19. Yalçin N, Sevinç V. Studies on silica obtained from rice husk. Ceram Int. 2001;27(2):219–24.

    Article  Google Scholar 

  20. Patel M, Karera A, Prasanna P. Effect of thermal and chemical treatments on carbon and silica contents in rice husk. J Mater Sci. 1987;22(7):2457–64.

    Article  CAS  Google Scholar 

  21. Javed SH, Naveed S, Ramzan N, Feroze N, Zafar M. Characterization of amorphous silica obtained from KMnO4 treated rice husk. J Chem Soc Pak. 2010;32(1):78–82.

    CAS  Google Scholar 

  22. Liou T-H. Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon. 2004;42(4):785–94.

    Article  CAS  Google Scholar 

  23. Gu S, Zhou J, Luo Z, Wang Q, Ni M. A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind Crop Prod. 2013;50:540–9.

    Article  CAS  Google Scholar 

  24. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods: complex mechanisms and isothermal predicted conversion–time curves. Chemometr Intell Lab. 2009;96(2):219–26.

    Article  CAS  Google Scholar 

  25. Mochidzuki K, Sakoda A, Suzuki M, Izumi J, Tomonaga N. Structural behavior of rice husk silica in pressurized hot-water treatment processes. Ind Eng Chem Res. 2001;40(24):5705–9.

  26. Krishnarao RV, Godkhindi MM. Distribution of silica in rice husks and its effect on the formation of silicon carbide. Ceram Int. 1992;18(4):243–9.

    Article  CAS  Google Scholar 

  27. Amorim JA, Eliziário SA, Gouveia DS, Simőes ASM, Santos JCO, Conceiçăo MM, et al. Thermal analysis of the rice and by-products. J Therm Anal Cal. 2004;75(2):393–9.

    Article  CAS  Google Scholar 

  28. Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind Eng Chem Res. 2006;45(13):4486–93.

    Article  CAS  Google Scholar 

  29. Lai Z, Ma X, Tang Y, Lin H, Chen Y. Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres. Bioresour Technol. 2012;107:444–50.

    Article  CAS  Google Scholar 

  30. Wang G, Li W, Xue Q, Yi Y, Li B. Thermogravimetric behaviors of biomass’ chemical components under air or syngas. J Fuel Chem Tech. 2009;37(2):170–6.

    Google Scholar 

  31. Xianhua W, Hanping C, Jing W, Fen X, Haiping Y. Influence of mineral matters on biomass pyrolysis characteristics. J Fuel Chem Tech. 2008;36(6):679–83.

    Google Scholar 

  32. Zakharov AI, Belyakov AV, Tsvigunov AN. Forms of extraction of silicon compounds in rice husks. Glass Ceram. 1993;50(9–10):420–5.

    Article  Google Scholar 

  33. Sarangi M, Nayak P, Tiwari TN. Effect of temperature on nano-crystalline silica and carbon composites obtained from rice-husk ash. Compos B. 2011;42(7):1994–8.

    Article  Google Scholar 

  34. Li Z. Influence of alkali and alkaline earth metals on biomass pyrolysis characteristics. Wuhan: Huazhong University of Science and Technology; 2008.

    Google Scholar 

  35. Tan H, Wang S, Luo Z, Cen K. Pyrolysis behavior of cellulose, xylan and lignin. J Fuel Chem Tech. 2006;34(1):61–5.

    CAS  Google Scholar 

  36. Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM. Nanosilica from rice husk: extraction and characterization. Ind Crop Prod. 2013;43:291–6.

    Article  CAS  Google Scholar 

  37. Sonobe T, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. 2008;87(3):414–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key Project of Fundamental Research on Biomass to High-Grade Fuel (2013CB228100) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Zhou, J., Luo, Z. et al. Kinetic study on the preparation of silica from rice husk under various pretreatments. J Therm Anal Calorim 119, 2159–2169 (2015). https://doi.org/10.1007/s10973-014-4219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4219-z

Keywords

Navigation