Skip to main content
Log in

Performance prediction and test of a Bi2Te3-based thermoelectric module for waste heat recovery

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermoelectric generator could be widely used in the exhaust heat recovery for automobile engines. It is necessary to develop thermoelectric coupling models for optimizing the configuration of thermoelectric generator and increasing the output power with better materials. Lots of works on the one-dimensional physical models were undertaken but lacked comprehensive experimental verification. In this work, a one-dimensional physical model for thermoelectric power generation is established for a thermoelectric module in certain conditions of heat source and heat sink temperatures. The influence of the thermal resistances between the thermoelement and the heat source and heat sink is carefully taken into account, and in the basic thermoelectric theory, the expression of output power based on Thomson effect is analyzed. A reasonable experiment system is devised to measure the output power of a fabricated Bi2Te3-based thermoelectric module under large temperature differences. In order to validate the reasonability of the one-dimensional temperature distribution hypothesis, the temperature distribution of the thermoelectric elements is explored by a thermal imager. At last, to verify the accuracy of the established physical model, comparisons are made between the output power calculation results and the results from experiments and 3D simulation of the ANSYS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang DH, Tran TN, Yang B. Investigation on the reaction of iron powder mixture as a portable heat source for thermoelectric power generators. J Therm Anal Calorim. 2014;116(2):1047–53.

    Article  CAS  Google Scholar 

  2. Romano MS, Gambhir S, Razal JM, Gestos A, Wallace GG, Chen J. Novel carbon materials for thermal energy harvesting. J Therm Anal Calorim. 2012;109(3):1229–35.

    Article  CAS  Google Scholar 

  3. Kim S, Park S, Kim S, Rhi SH. A thermoelectric generator using engine coolant for light-duty internal combustion engine-powered vehicles. J Electron Mater. 2011;40(5):812–6.

    Article  CAS  Google Scholar 

  4. Tatarinov D, Wallig D, Bastian G. Optimized characterization of thermoelectric generators for automotive application. J Electron Mater. 2012;41(6):1706–12.

    Article  CAS  Google Scholar 

  5. Wen H, Liu C, Yao Y, Gu Y. Study on heat recovery from engine exhaust based on thermoelectric effect. J Nanchang Univ (Eng Technol). 2011;33(1):45–8.

    CAS  Google Scholar 

  6. Deng YD, Fan W, Ling K, Su CQ. A 42-V electrical and hybrid driving system based on a vehicular waste-heat thermoelectric generator. J Electron Mater. 2012;41(6):1698–705.

    Article  CAS  Google Scholar 

  7. Gou X, Yang S, Xiao H, Ou Q. A dynamic model for thermoelectric generator applied in waste heat recovery. Energy. 2013;52:201–9.

    Article  Google Scholar 

  8. Chen M, Lu SS, Liao B. On the figure of merit of thermoelectric generators. J Energy Res Technol. 2005;127:37–41.

    Article  Google Scholar 

  9. Crane DT, La Grandeur JW, Harris F, Bell LE. Performance results of a high-power-density thermoelectric generator: beyond the couple. J Electron Mater. 2009;38(7):1375–81.

    Article  CAS  Google Scholar 

  10. Ziolkowski P, Poinas P, Leszczynski J, Karpinski G, Müller E. Estimation of thermoelectric generator performance by finite element modeling. J Electron Mater. 2010;39(9):1934–43.

    Article  CAS  Google Scholar 

  11. Meng F, Chen L, Sun F. A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities. Energy. 2011;36:3513–22.

    Article  Google Scholar 

  12. Rowe DM, Gao M. Design theory of thermoelectric modules for electrical power generation. IEE Proc Sci Meas Technol. 1996;143(6):351–6.

    Article  Google Scholar 

  13. Glatz W, Muntwyler S, Hierold C. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens Actuators A. 2006;132:337–45.

    Article  CAS  Google Scholar 

  14. Strasser M, Aigner R, Lauterbach C, Sturm TF, Franosch M, Wachutka G. Micromachined CMOS thermoelectric generators as on-chip power supply. Sens Actuators A. 2004;114:362–70.

    Article  CAS  Google Scholar 

  15. Chen J, Yan Z. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator. J Appl Phys. 1996;79(11):8823–8.

    Article  CAS  Google Scholar 

  16. Angrist SW. Direct Energy Conversion, vol. 4. Boston: Allyn and Bacon; 1982.

    Google Scholar 

  17. Jia L, Chen Z, Hu P, Su W. Thermodynamic analysis of semiconductor thermoelectric generator. J Univ Sci Technol China. 2004;34(6):684–7.

    Google Scholar 

  18. Freunek M, Müller M, Ungan T, Walker W, Reindl LM. New physical model for thermoelectric generators. J Electron Mater. 2009;38(9):1214–20.

    Article  CAS  Google Scholar 

  19. Jang B, Han S, Kim JY. Optimal design for micro-thermoelectric generators using finite element analysis. Microelectron Eng. 2011;88:775–8.

    Article  CAS  Google Scholar 

  20. Cheng F, Hong Y, Zhu C. A physical model for thermoelectric generators with and without Thomson heat. J Energy Res Technol. 2014;136(1):011201.

    Article  Google Scholar 

  21. Rowe DM, Gao M, Zhang JS. Thermoelectric energy conversion and applications. Beijing: Arm Industry Press; 1996.

    Google Scholar 

  22. Cobble MH, Rowe DM. CRC handbook of thermoelectric. London: CRC Press; 1995.

    Google Scholar 

  23. Srivastava P, Singh K. Structural and thermal properties of chemically synthesized Bi2Te3 nanoparticles. J Therm Anal Calorim. 2012;110(2):523–7.

    Article  CAS  Google Scholar 

  24. Leszczynski J, Wojciechowski KT, Malecki AL. Studies on thermal decomposition and oxidation of CoSb3. J Therm Anal Calorim. 2011;105(1):211–22.

    Article  CAS  Google Scholar 

  25. Antonova E E, Looman D C (2005) Finite Elements for Thermoelectric Device Analysis in ANSYS. In: Proceedings of the 24th International Conference on Thermoelectrics, 200.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanji Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Hong, Y., Zhong, W. et al. Performance prediction and test of a Bi2Te3-based thermoelectric module for waste heat recovery. J Therm Anal Calorim 118, 1781–1788 (2014). https://doi.org/10.1007/s10973-014-4153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4153-0

Keywords

Navigation