Skip to main content
Log in

Novel carbon materials for thermal energy harvesting

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To decrease the consumption of fossil fuels, research has been done on utilizing low grade heat, sourced from industrial waste streams. One promising thermoenergy conversion system is a thermogalvanic cell; it consists of two identical electrodes held at different temperatures that are placed in contact with a redox-based electrolyte [1, 2]. The temperature dependence of the direction of redox reactions allows power to be extracted from the cell [3, 4]. This study aims to increase the power conversion efficiency and reduce the cost of thermogalvanic cells by optimizing the electrolyte and utilizing a carbon based electromaterial, reduced graphene oxide, as electrodes. Thermal conductivity measurements of the K3Fe(CN)6/K4Fe(CN)6 solutions used, indicate that the thermal conductivity decreases from 0.591 to 0.547 W/m K as the concentration is increased from 0.1 to 0.4 M. The lower thermal conductivity allowed a larger temperature gradient to be maintained in the cell. Increasing the electrolyte concentration also resulted in higher power densities, brought about by a decrease in the ohmic overpotential of the cell, which allowed higher values of short circuit current to be generated. The concentration of 0.4 M K3Fe(CN)6/K4Fe(CN)6 is optimal for thermal harvesting applications using R-GO electrodes due to the synergistic effect of the reduction in thermal flux across the cell and the enhancement of power output, on the overall power conversion efficiency. The maximum mass power density obtained using R-GO electrodes was 25.51 W/kg (three orders of magnitude higher than platinum) at a temperature difference of 60 °C and a K3Fe(CN)6/K4Fe(CN)6 concentration of 0.4 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Quickenden TI, Mua Y. The power conversion efficiencies of a thermogalvanic cell operated in three different orientations. J Electrochem Soc. 1995;142(11):3652–9.

    Article  CAS  Google Scholar 

  2. Ratkje SK, Ikeshoji T, Syverud K. Heat and internal energy changes at electrodes and junctions in thermocells. J Electrochem Soc. 1990;137(7):2088–95.

    Article  CAS  Google Scholar 

  3. Quickenden TI, Mua Y. A review of power generation in aqueous thermogalvanic cells. J Electrochem Soc. 1995;142(11):3985–94.

    Article  CAS  Google Scholar 

  4. Goncalves R, Ikeshoji T. Comparative studies of a thermoelectric converter by a thermogalvanic cell with a mixture of concentrated potassium ferrocyanide and potassium ferricyanide aqueous solutions at great temperature differences. J Braz Chem Soc. 1992;3(3):4.

    Google Scholar 

  5. Noam L. Energy resources and use: the present (2008) situation and possible sustainable paths to the future. Energy. 2010;35(6):2631–8.

    Article  Google Scholar 

  6. Fronk BM, Neal R, Garimella S. Evolution of the transition to a world driven by renewable energy. J Energy Res Technol. 2010;132(2):21009–15.

    Google Scholar 

  7. Vining CB. An inconvenient truth about thermoelectrics. Nat Mater. 2009;8(2):83–5.

    Article  CAS  Google Scholar 

  8. Hertz HG, Ratkje SK. Theory of thermocells. J Electrochem Soc. 1989;136(6):1698–704.

    Article  CAS  Google Scholar 

  9. Hornut JM, Storck A. Experimental and theoretical analysis of a thermogalvanic undivided flow cell with two aqueous electrolytes at different temperatures. J Appl Electrochem. 1991;21(12):1103–13.

    Article  CAS  Google Scholar 

  10. Mua Y, Quickenden TI. Power conversion efficiency, electrode separation, and overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. J Electrochem Soc. 1996;143(8):2558–64.

    Article  CAS  Google Scholar 

  11. Li D, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nano. 2008;3(2):101–5.

    Article  CAS  Google Scholar 

  12. Khan U, et al. High-concentration solvent exfoliation of graphene. Small. 2010;6(7):864–71.

    Article  CAS  Google Scholar 

  13. Lee C, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.

    Article  CAS  Google Scholar 

  14. Wang N, et al. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm. Anal. Calorim. 2012;107:949–54.

    Google Scholar 

  15. Bolotin KI, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146(9–10):351–5.

    Article  CAS  Google Scholar 

  16. Stoller MD, et al. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.

    Article  CAS  Google Scholar 

  17. Eizenberg M, Blakely JM. Carbon monolayer phase condensation on Ni(111). Surf Sci. 1979;82(1):228–36.

    Article  CAS  Google Scholar 

  18. Novoselov KS, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.

    Article  CAS  Google Scholar 

  19. Coleman JN. Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater. 2009;19(23):3680–95.

    Article  CAS  Google Scholar 

  20. Park S, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009;9(4):1593–7.

    Article  CAS  Google Scholar 

  21. C-Therm Technologies Ltd.C-Therm Technologies-Products. http://www.ctherm.com/products/tci_thermal_conductivity.

  22. Lerf A, et al. Structure of graphite oxide revisited. J Phys Chem B. 1998;102(23):4477–82.

    Article  CAS  Google Scholar 

  23. Stankovich S, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.

    Article  CAS  Google Scholar 

  24. da Silva M, et al. Synthesis and characterization of CeO2–graphene composite. J Therm Anal Calorim. 2012;107(1):257–63.

    Article  Google Scholar 

  25. Hu R, et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 2010;10(3):838–46.

    Article  CAS  Google Scholar 

  26. Artjom VS. Theoretical study of thermogalvanic cells in steady state. Electrochim Acta. 1994;39(4):597–609.

    Article  Google Scholar 

  27. Quickenden TI, Vernon CF. Thermogalvanic conversion of heat to electricity. Sol Energy. 1986;36(1):63–72.

    Article  CAS  Google Scholar 

  28. Atkins P, Paula Jd. Physical chemistry. New York: Oxford University Press; 2002.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from C-THERM TECHNOLOGIES for presentation of this work, the Department of Science and Technology, Philippines, and the ARC Centre of Excellence for Electromaterials Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, M.S., Gambhir, S., Razal, J.M. et al. Novel carbon materials for thermal energy harvesting. J Therm Anal Calorim 109, 1229–1235 (2012). https://doi.org/10.1007/s10973-012-2311-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2311-9

Keywords

Navigation