Skip to main content
Log in

Isothermal crystallization kinetics and melting behavior of PLLA/f-MWNTs composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(l-lactide) (PLLA) and functionalized multi-walled carbon nanotubes (f-MWNTs) were used to prepare PLLA/f-MWNTs composites via solution blending. The structure and morphology of f-MWNTs were characterized using FT-IR and SEM. The spherulitic morphologies, isothermal crystallization kinetics, and melting behavior of the resulting PLLA/f-MWNTs composites were investigated by POM and DSC, respectively. Both Avrami and Lauritzen–Hoffman kinetics models are used to quantitatively evaluate the crystallization half-time t 1/2, the nucleation constant K g, and the work of chain folding q of PLLA and its composites. Temperature modulated DSC was used to investigate the mechanism of overlapped endothermic and exothermic peaks of PLLA/f-MWNTs composites. The results indicated that the SiO2 coating on the MWNTs could react with coupling agent KH-550 leading to the formation of f-MWNTs, which can be evenly dispersed in PLLA matrix. A decrease of spherulite size and an increase of crystallization rate were observed from POM measurements for PLLA/f-MWNTs. The multiple melting behavior can be attributed to the melt-recrystallization process of PLLA/f-MWNTs composites at certain temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dornburg V, Hermann BG, Patel MK. Scenario projections for future market potentials of biobased bulk chemicals. Environ Sci Technol. 2008;42(7):2261–7.

    Article  CAS  Google Scholar 

  2. Reed A, Gilding D. Biodegradable polymers for use in surgery-poly (glycolic)/poly (lactic acid) homo and copolymers: 2: in vitro degradation. Polymer. 1981;22(4):494–8.

    Article  CAS  Google Scholar 

  3. Kalb B, Pennings A. General crystallization behaviour of poly (l-lactic acid). Polymer. 1980;21(6):607–12.

    Article  CAS  Google Scholar 

  4. Marega C, Marigo A, Di Noto V, Zannetti R, Martorana A, Paganetto G. Structure and crystallization kinetics of poly (l-lactic acid). Die Makromol Chem. 1992;193(7):1599–606.

    Article  CAS  Google Scholar 

  5. Yu T, Ren J, Li S, Yuan H, Li Y. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos A Appl Sci Manuf. 2010;41(4):499–505.

    Article  Google Scholar 

  6. Kunioka M, Ninomiya F, Funabashi M. Biodegradation of poly (lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods. Polym Degrad Stab. 2006;91(9):1919–28.

    Article  CAS  Google Scholar 

  7. Jacobsen S, Fritz H-G. Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci. 1999;39(7):1303–10.

    Article  CAS  Google Scholar 

  8. Wang H, Qiu Z. Crystallization kinetics and morphology of biodegradable poly (l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta. 2012;527:40–6.

    Article  CAS  Google Scholar 

  9. Cohn D, Hotovely Salomon A. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials. 2005;26(15):2297–305.

    Article  CAS  Google Scholar 

  10. Masirek R, Piorkowska E, Galeski A, Mucha M. Influence of thermal history on the nonisothermal crystallization of poly (l-lactide). J Appl Polym Sci. 2007;105(1):282–90.

    Article  CAS  Google Scholar 

  11. Chrissafis K, Pavlidou E, Paraskevopoulos KM, Beslikas T, Nianias N, Bikiaris D. Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J Therm Anal Calorim. 2011;105:313–23.

    Article  CAS  Google Scholar 

  12. Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer. 2007;48(23):6855–66.

    Article  CAS  Google Scholar 

  13. Chen H, Pyda M, Cebe P. Non-isothermal crystallization of PET/PLA blends. Thermochim Acta. 2009;492(1):61–6.

    Article  CAS  Google Scholar 

  14. Fujimori A, Ninomiya N, Masuko T. Influence of dispersed organophilic montmorillonite at nanometer-scale on crystallization of poly (l-lactide). Polym Eng Sci. 2008;48(6):1103–11.

    Article  CAS  Google Scholar 

  15. Bordes P, Pollet E, Avérous L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci. 2009;34(2):125–55.

    Article  CAS  Google Scholar 

  16. Day M, Nawaby AV, Liao X. A DSC study of the crystallization behavior of polylactic acid and its nanocomposites. J Therm Anal Calorim. 2006;86(3):623–9.

    Article  CAS  Google Scholar 

  17. Pan P, Liang Z, Cao A, Inoue Y. Layered metal phosphonate reinforced poly (l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces. 2009;1(2):402–11.

    Article  CAS  Google Scholar 

  18. Papageorgiou G, Achilias D, Nanaki S, Beslikas T, Bikiaris D. PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta. 2010;511(1):129–39.

    Article  CAS  Google Scholar 

  19. Zhao Y, Qiu Z, Yang W. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly (l-lactide). J Phys Chem B. 2008;112(51):16461–8.

    CAS  Google Scholar 

  20. Pan H, Qiu Z. Biodegradable poly (l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules. 2010;43(3):1499–506.

    Article  CAS  Google Scholar 

  21. Yu J, Qiu Z. Preparation and properties of biodegradable poly (l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces. 2011;3(3):890–7.

    Article  CAS  Google Scholar 

  22. Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95(2):627–32.

    Article  CAS  Google Scholar 

  23. Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stöckli T, et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett. 1999;82(5):944.

    Article  CAS  Google Scholar 

  24. Qi YN, Xu F, Sun LX. Thermal stability and glass transition behavior of PANI/MWNT composites. J Therm Anal Calorim. 2008;94(1):137–41.

    Article  CAS  Google Scholar 

  25. Subramoney S. Novel nanocarbons: structure, properties, and potential applications. Adv Mater. 1998;10(15):1157–71.

    Article  CAS  Google Scholar 

  26. Rahmatpour A, Aalaie J. Steady shear rheological behavior, mechanical properties, and morphology of the polypropylene/carbon nanotube nanocomposites. J Macromol Sci B. 2008;47(5):929–41.

    Article  CAS  Google Scholar 

  27. Kaganj AB, Rashidi AM, Arasteh R, Taghipoor S. Crystallisation behaviour and morphological characteristics of poly (propylene)/multi-walled carbon nanotube nanocomposites. J Exp Nanosci. 2009;4(1):21–34.

    Article  CAS  Google Scholar 

  28. Sahoo NG, Cheng HKF, Cai J, Li L, Chan SH, Zhao J, et al. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater Chem Phys. 2009;117(1):313–20.

    CAS  Google Scholar 

  29. Kim KH, Jo WH. A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon. 2009;47(4):1126–34.

    Article  CAS  Google Scholar 

  30. Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39(16):5194–205.

    Article  CAS  Google Scholar 

  31. Ray SS. Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res. 2012;45:1710–20.

    Article  Google Scholar 

  32. Raquez JM, Habibi Y, Murariu M, Dubois P. Polylactide(PLA)-based nanocomposites. Prog Polym Sci. 2013;38:1504–42.

    Article  CAS  Google Scholar 

  33. Wu D, Wu L, Zhang M, Zhao Y. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab. 2008;93(8):1577–84.

    Article  CAS  Google Scholar 

  34. Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, et al. Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer. 2010;51(3):730–7.

    Article  CAS  Google Scholar 

  35. Wu D, Wu L, Zhou W, Zhang M, Yang T. Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci. 2010;50(9):1721–33.

    Article  CAS  Google Scholar 

  36. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre J-M, et al. Crystallization behavior of carbon nanotube–polylactide nanocomposites. Macromolecules. 2011;44(16):6496–502.

    Article  CAS  Google Scholar 

  37. Song W, Zheng Z, Tang W, Wang X. A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer. 2007;48(13):3658–63.

    Article  CAS  Google Scholar 

  38. Neelgund GM, Oki A. Pd nanoparticles deposited on poly (lactic acid) grafted carbon nanotubes: synthesis, characterization and application in Heck C–C coupling reaction. Appl Catal A. 2011;399(1):154–60.

    Article  CAS  Google Scholar 

  39. Huang J-W. Effect of nanoscale fully vulcanized acrylic rubber powders on crystallization of poly (butylene terephthalate): isothermal crystallization. Eur Polym J. 2007;43(10):4188–96.

    Article  CAS  Google Scholar 

  40. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38(13):3151–212.

    Article  CAS  Google Scholar 

  41. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A. 1962;66(1):13–28.

    Article  Google Scholar 

  42. Kalkar A, Deshpande V, Kulkarni M. Isothermal crystallization kinetics of poly (phenylene sulfide)/TLCP composites. Polym Eng Sci. 2009;49(2):397–417.

    Article  CAS  Google Scholar 

  43. Di Lorenzo ML. Determination of spherulite growth rates of poly (l-lactic acid) using combined isothermal and non-isothermal procedures. Polymer. 2001;42(23):9441–6.

    Article  Google Scholar 

  44. Hoffman JD. Theory of the substrate length in polymer crystallization: surface roughening as an inhibitor for substrate completion. Polymer. 1985;26(12):1763–78.

    Article  CAS  Google Scholar 

  45. Cai J, Liu M, Wang L, Yao K, Li S, Xiong H. Isothermal crystallization kinetics of thermoplastic starch/poly (lactic acid) composites. Carbohydr Polym. 2011;86(2):941–7.

    Article  CAS  Google Scholar 

  46. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly (l-lactide): molecular weight dependence. Macromolecules. 2007;40(19):6898–905.

    Article  CAS  Google Scholar 

  47. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly (l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41(4):1352–7.

    Article  CAS  Google Scholar 

  48. Di Lorenzo ML. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J Appl Polym Sci. 2006;100(4):3145–51.

    Article  Google Scholar 

  49. Song P, Chen GY, Wei ZY. Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity. Therm Anal Calorim. 2013;111:1507–14.

    Article  CAS  Google Scholar 

  50. Wang Y, Mano JF. Role of thermal history on the thermal behavior of poly(l-lactic acid) studied by DSC and optical microscopy. J Therm Anal Calorim. 2005;80:171–5.

    Article  CAS  Google Scholar 

  51. Xu HS, Dai XJ, Lamb PR, Li ZM. Poly(l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci B. 2009;47:2341–52.

    Article  CAS  Google Scholar 

  52. Calafe M, Remiro PM, Cortázar MM, Calahorra ME. Cold crystallization and multiple melting behavior of poly(l-lactide) in homogeneous and in multiphasic epoxy blends. Colloid Polym Sci. 2010;288:283–96.

    Article  Google Scholar 

  53. Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(l-lactic acid-co-d-lactic acid). J Polym Sci B. 2011;49:409–13.

    Article  CAS  Google Scholar 

  54. Liu T, Petermann J. Multiple melting behavior in isothermally cold crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.

    Article  CAS  Google Scholar 

  55. Gunaratne LMWK, Shanks RA. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur Polym J. 2005;41:2980–8.

    Article  CAS  Google Scholar 

  56. Shan GF, Yang W, Tang XG. Multiple melting behaviour of annealed crystalline polymers. Polym Test. 2010;29:273–80.

    Article  CAS  Google Scholar 

  57. Kalish JP, Aou K, Yang X. Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(l-lactic acid). Polymer. 2011;52:814–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuping Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Lu, X., Li, H. et al. Isothermal crystallization kinetics and melting behavior of PLLA/f-MWNTs composites. J Therm Anal Calorim 117, 1385–1396 (2014). https://doi.org/10.1007/s10973-014-3885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3885-1

Keywords

Navigation