Skip to main content
Log in

The adaptability of Cu/Zr oxides as oxygen carrier used for chemical looping air separation (CLAS)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chemical looping air separation (CLAS), based on the chemical looping principle, is a novel and energy-efficient method to separate oxygen from air. The oxygen carriers used capture oxygen from air in an oxidation reactor and release oxygen in a reduction reactor. In this work, the adaptability of Cu/Zr oxygen carrier used for CLAS was investigated through thermodynamic analysis and experimental methods. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to measure the phases and surface morphology of oxygen carriers before and after experiments. The results show that CuO has the capability of releasing oxygen when the temperature is higher than 725 °C in the nitrogen atmosphere, and the minimum oxygen reduction temperatures increase with the increasing of oxygen concentrations. The Cu/Zr oxygen carrier has high oxygen reduction and oxidation rates when temperature is higher than a certain values. For reduction, the value is about 860 °C. For oxidation, the value is about 500 °C. The reactivity of oxygen carrier increases significantly with the temperature increasing. On overall, reactivity of oxygen carrier has little difference under different particle sizes. The oxygen carrier exhibits a stable oxygen reduction and oxidation behavior during reduction–oxidation cycles. XRD patterns show that the main phases in reduced samples are Cu2O and ZrO2. The main phases in fresh and oxidized samples are CuO and ZrO2. SEM images show that the fresh and reacted oxygen carriers are porous. The surface of reacted samples is smoother than fresh samples and no agglomeration has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moghtaderi B. Application of chemical looping concept for air separation at high temperatures. Energy Fuels. 2010;24(1):190–8.

    Article  CAS  Google Scholar 

  2. Erlach B, Schmidt M, Tsatsaronis G. Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. Energy. 2011;36(6):3804–15.

    Article  CAS  Google Scholar 

  3. Abad A, Adánez-Rubio I, Gayán P, García-Labiano F, de Diego LF, Adánez J. Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kWth continuously operating unit using a Cu-based oxygen-carrier. Int J Greenh Gas Control. 2012;6:189–200.

    Article  CAS  Google Scholar 

  4. Berguerand N, Lyngfelt A. Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels—testing with South African coal. Fuel. 2008;87(12):2713–26.

    Article  CAS  Google Scholar 

  5. Zhang YX, Droodchi E, Moghtaderi B. Thermodynamic assessment of a novel concept for integrated gasification chemical looping combustion of solid fuels. Energy Fuels. 2012;26(1):287–95.

    Article  CAS  Google Scholar 

  6. Keller M, Leion H, Mattisson T, Lyngfelt A. Gasification inhibition in chemical-looping combustion with solid fuels. Combust Flame. 2011;158(3):393–400.

    Article  CAS  Google Scholar 

  7. Mattisson T, Johansson M, Lyngfelt A. The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel. 2006;85(5–6):736–47.

    Article  CAS  Google Scholar 

  8. Chandel MK, Hoteit A, Delebarre A. Experimental investigation of some metal oxides for chemical looping combustion in a fluidized bed reactor. Fuel. 2009;88(5):898–908.

    Article  CAS  Google Scholar 

  9. Mattisson T, Lyngfelt A, Leion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenh Gas Control. 2009;3(1):11–9.

    Article  CAS  Google Scholar 

  10. Leion H, Mattisson T, Lyngfelt A. Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels. Energy Procedia. 2009;1(1):447–53.

    Article  CAS  Google Scholar 

  11. Adánez-Rubio I, Gayán P, García-Labiano F, de Diego LF, Adánez J, Abad A. Development of CuO-based oxygen-carrier materials suitable for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Energy Procedia. 2011;4:417–24.

    Article  Google Scholar 

  12. Fossdal A, Bakken E, Øye BA, Schøning C, Kaus I, Mokkelbost T, Larring Y. Study of inexpensive oxygen carriers for chemical looping combustion. Int J Greenh Gas Control. 2011;5(3):483–8.

    Article  CAS  Google Scholar 

  13. Moghtaderi B, Song H. Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion. Energy Fuels. 2010;24:5359–68.

    Article  CAS  Google Scholar 

  14. Linderholm C, Abad A, Mattisson T, Lyngfelt A. 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. Int J Greenh Gas Control. 2008;2(4):520–30.

    Article  CAS  Google Scholar 

  15. Johansson M, Mattisson T, Lyngfelt A. Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion. Chem Eng Res Des. 2006;84(A9):807–18.

    Article  CAS  Google Scholar 

  16. Li YJ, Liu HL, Sun RY, Wu SM, Lu CM. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature. J Therm Anal Calorim. 2012;110(2):685–94.

    Article  CAS  Google Scholar 

  17. Chuang SY, Dennis JS, Hayhurst AN, Scott SA. Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combust Flame. 2008;154(1–2):109–21.

    Article  CAS  Google Scholar 

  18. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. Chemical-Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers–oxygen release and reactivity with methane. Fuel. 2011;90(3):941–50.

    Article  CAS  Google Scholar 

  19. Wang K, Yu QB, Qin Q. The thermodynamic method for selecting oxygen carriers used for chemical looping air separation. J Therm Anal Calorim. 2013;112(2):747–53.

    Article  CAS  Google Scholar 

  20. Adanez J, Alberto A, Francisco GL, Pilar G, de Diego LF. Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci. 2012;38(2):215–82.

    Article  CAS  Google Scholar 

  21. Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels. 2004;18(2):371–7.

    Article  CAS  Google Scholar 

  22. Gayan P, Adanez-Rubio I, Abad A, de Diego LF, Garcia-Labiano F, Adanez J. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel. 2012;96(1):226–38.

    Article  CAS  Google Scholar 

  23. Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel. 2009;88(4):683–90.

    Article  CAS  Google Scholar 

  24. Adanez-Rubio I, Gayan P, Abad A, de Diego LF, Garcia-Labiano F, Adanez J. Evaluation of a spray-dried CuO/MgAl2O4 oxygen carrier for the chemical looping with oxygen uncoupling process. Energy Fuels. 2012;26(5):3069–81.

    Article  CAS  Google Scholar 

  25. Moghtaderi B. Review of the recent chemical looping process developments for novel energy and fuel applications. Energy Fuels. 2012;26(1):15–40.

    Article  CAS  Google Scholar 

  26. Zhao HY, Cao Y, Kang ZZ, Wang YB, Pan WP. Thermal characteristics of Cu-based oxygen carriers. J Therm Anal Calorim. 2012;109(3):1105–9.

    Article  CAS  Google Scholar 

  27. Arjmand M, Azad AM, Leion H, Lyngfelt A, Mattisson T. Prospects of Al2O3 and MgAl2O4-supported CuO oxygen carriers in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Energy Fuels. 2011;25(11):5493–502.

    Article  CAS  Google Scholar 

  28. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101(12):4584–92.

    Article  CAS  Google Scholar 

  29. Iggland M, Leion H, Mattisson T, Lyngfelt A. Effect of fuel particle size on reaction rate in chemical looping combustion. Chem Eng Sci. 2010;65(22):5841–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51274066), the Postgraduate Innovation Foundation of NEU (Grant No. 120602004) and the Academic New Artist Ministry of Education Doctoral Post Graduate (Grant No. 02080020203023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Yu, Q., Duan, W. et al. The adaptability of Cu/Zr oxides as oxygen carrier used for chemical looping air separation (CLAS). J Therm Anal Calorim 115, 1163–1172 (2014). https://doi.org/10.1007/s10973-013-3440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3440-5

Keywords

Navigation