Skip to main content

Advertisement

Log in

Kinetics of perovskite-like oxygen carriers for chemical looping air separation

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chemical looping air separation gives an energy-efficient choice for oxygen production. We performed kinetic analysis of YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers in a CLAS process. TG experiments were conducted with heating rates of 0.5, 1, and 2 °C/min in a thermogravimetric analyzer. Further exploration is required to develop an appropriate oxygen carrier. So, we used the model-free approach, Starink method, to evaluate the apparent activation energy. And, masterplots method was applied to determine the most probable mechanism function. The results show that the distributed activation energies of oxidation/reduction process are 189.42/286.22 kJ/mol, 197.70/324.87 kJ/mol, 195.41/310.4 kJ/mol, and 192.20/293.53 kJ/mol for YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers, respectively. Random nucleation and nuclei growth A model is the most suitable for oxidation process. The A model and D are the most suitable for the reduction process. Regarding YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ kinetic, oxygen transfer materials are rate-determined by nucleation and nuclei growth. For reduction kinetic, the gas diffusion stage could also become a dominant step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Shah, B. Moghtaderi, J. Zanganeh and T. Wall, Fuel, 107, 356 (2013).

    Article  CAS  Google Scholar 

  2. A.R. Smith and J. Klosek, Fuel Process Technol., 70(2), 115 (2001).

    Article  CAS  Google Scholar 

  3. B. Moghtaderi, Energy Fuels, 24(1), 190 (2010).

    Article  CAS  Google Scholar 

  4. H. Song, K. Shah, E. Doroodchi, T. Wall and B. Moghtaderi, Energy Fuel, 28, 173 (2013).

    Article  Google Scholar 

  5. H. Song, K. Shah, E. Doroodchi and B. Moghtaderi, Energy Fuel, 28, 163 (2014).

    Article  CAS  Google Scholar 

  6. A. Shulman, E. Cleverstam, T. Mattisson and A. Lyngfelt, Energy Fuel, 23, 5269 (2009).

    Article  CAS  Google Scholar 

  7. K. Wang, Q. B. Yu, H.Q. Xie and Q. Qin, Funct. Mater. Lett., 6(2), 1350022(1) (2013).

    Google Scholar 

  8. H. Song, K. Shah, E. Doroodchi and B. Moghtaderi, Energy Fuel, 28, 1284 (2014).

    Article  CAS  Google Scholar 

  9. K. Wang, Q. B. Yu, Q. Qin and Z. L. Zuo, J. Therm. Anal. Calorim., 119, 2221 (2014).

    Article  Google Scholar 

  10. K. Wang, Q.B. Yu and Q. Qin, Energy Fuel, 27(9), 5466 (2013).

    Article  CAS  Google Scholar 

  11. M. Ishida, M. Yamamoto and T. Ohba, Energy Convers and Manag., 43, 1469 (2002).

    Article  CAS  Google Scholar 

  12. T. Mattisson, H. Leion and A. Lyngfelt, Fuel, 88, 683 (2009).

    Article  CAS  Google Scholar 

  13. M. Arjmand, A. Azad, H. Leion, A. Lyngfelt and T. Mattisson, Energy Fuel, 25(11), 5493 (2011).

    Article  CAS  Google Scholar 

  14. K. Wang, Q. B. Yu and Q. Qin, J. Therm. Anal. Calorim., 112(2), 747 (2013).

    Article  CAS  Google Scholar 

  15. G. Azimi, H. Leion, M. Rydén, T. Mattisson and A. Lyngfelt, Energy Fuel, 27(1), 367 (2013).

    Article  CAS  Google Scholar 

  16. K. Wang, Q. B. Yu, Q. Qin and Z. Zuo, J. Therm. Anal. Calorim., 119(3), 2221 (2015).

    Article  CAS  Google Scholar 

  17. K. Zhao, F. He, Z. Huang, G.Q. Wei, A.Q. Zheng, H.B. Li and Z. L. Zhao, Korean J. Chem. Eng., 34(6), 1651 (2017).

    Article  CAS  Google Scholar 

  18. B.Y. Kwak, N. K. Park, J. I. Baek, H. J. Ryu and M. Kang, Korean J. Chem. Eng., 34(7), 1936 (2017).

    Article  CAS  Google Scholar 

  19. T. Motohashi, S. Kadita, H. Fjellvag, M. Karppinen and H. Yamauchi, Mater. Sci. Eng. B., 148(1), 196 (2008).

    Article  CAS  Google Scholar 

  20. M. Karppinen, H. Yanauchi, S. Otani, T. Fujita, T. Motohashi, Y.-H. Huang, M. Valkeapää and H. Fjellvåg,, Chem. Mater., 18(2), 490 (2006).

    Article  CAS  Google Scholar 

  21. S. Kadita, M. Kappinen, T. Motohashi and H. Yamauchi, Chem. Mater., 20, 6378 (2008).

    Article  Google Scholar 

  22. S. Wang, H. S. Hao, B. F. Zhu, J. F. Jia and X. Hu, J. Mater. Sci., 43, 5385 (2008).

    Article  CAS  Google Scholar 

  23. H. S. Hao, Q. L. He, Y.G. Cheng and L.M. Zhao, J. Phys. Chem. Solids., 75(4), 495 (2014).

    Article  CAS  Google Scholar 

  24. S.M. Zhang, MA Dissertation, ZhengZhou University (2011).

    Google Scholar 

  25. L. J. Guo, MA Dissertation, ZhengZhou University (2005).

    Google Scholar 

  26. L. P. Kozeeva, M.Y. Kameneva, A.N. Lavrov and N.V. Podberezskaya, Inorg Mater., 49(6), 626 (2013).

    Article  CAS  Google Scholar 

  27. O. Parkkima, H. Yamauchi and M. Karppinen, Chem. Mater., 25(4), 599 (2013).

    Article  CAS  Google Scholar 

  28. V. Martin, Solid State Sci., 7(10), 1163 (2005).

    Article  Google Scholar 

  29. S. Räsänen, T. Motohashi, H. Yamauchi and M. Kappinen, J. Solid State Chem., 183, 692 (2010).

    Article  Google Scholar 

  30. T. Komiyama, T. Motohashi, Y. Masubuchi and S. Kikkawa, Mater. Res. Bull., 45, 1527 (2010).

    Article  CAS  Google Scholar 

  31. R. Samuli, P. Outi, R. Eeva-Leena, Y. Hisao and K. Maarit, Solid State Ionics., 208, 31 (2012).

    Article  Google Scholar 

  32. B. Jankovic, B. Adnadevic and J. Jovanovic, Thermochim. Acta, 452, 106 (2007).

    Article  CAS  Google Scholar 

  33. S. Vyazovkin, Thermochim. Acta, 355, 145 (2000).

    Article  Google Scholar 

  34. M. E. Brown, D. Dollimore and A. K. Galwey, Elsevier, Amsterdam., 22, 41 (1980).

    Google Scholar 

  35. S. Vyazovkin and C.A. Wight, Thermachim. Acta, 341, 53 (1999).

    Article  Google Scholar 

  36. S. Vyazovkin and C. A. Wight, J. Phys. Chem. A., 101(39), 7217 (1997).

    Article  CAS  Google Scholar 

  37. A.W. Coats and J. P. Redfern, Nature, 201, 68 (1964).

    Article  CAS  Google Scholar 

  38. A.W. Coats and J. P. Redfern, J. Polym. Sci. Part B: Polym. Lett., 3, 917 (1965).

    Article  CAS  Google Scholar 

  39. T. Ozawa, Bull. Chem. Soc. Japan, 38, 1881 (1965).

    Article  CAS  Google Scholar 

  40. C.D. Doyle, Anal. Chem., 33, 77 (1961).

    Article  CAS  Google Scholar 

  41. C.D. Doyle, J. Appl. Polym. Sci., 5, 285 (1961).

    Article  CAS  Google Scholar 

  42. C.D. Doyle, Nature, 207, 290 (1965).

    Article  CAS  Google Scholar 

  43. H. E. Kissinger, Anal. Chem., 29, 1702 (1957).

    Article  CAS  Google Scholar 

  44. T. Akahira and T. Sunose, Res. Rep. Chiba. Inst. Technol., 16, 22 (1971).

    Google Scholar 

  45. S.V. Vyazovkin and A. I. Lesnikovich, Thermochim. Acta, 34(3), 609 (1988).

    CAS  Google Scholar 

  46. P.K. Agrawal, Thermochim. Acta, 203, 93 (1992).

    Article  CAS  Google Scholar 

  47. M. J. Starink, Thermochim. Acta, 288, 97 (1996).

    Article  CAS  Google Scholar 

  48. S. Vyazovkina, A.K. Burnhamb, J. M. Criadoc, A. L. Pérez-Maquedac, C. Popescud and N. Sbirrazzuolie, Thermochim. Acta, 520(1-2), 1 (2011).

    Article  Google Scholar 

  49. T. Wanjun, L. Yuwen, Z. Hen and W. Cunxin, Thermochim. Acta, 74, 309 (2003).

    CAS  Google Scholar 

  50. F. J. Gotor, J. M. Criado, J. Malek and M. Koga, J. Phys. Chem. A., 104, 10777 (2000).

    Article  CAS  Google Scholar 

  51. T. Wanjun, L. Yuwen, Z. Hen and W. Cunxin, Thermochim. Acta, 74, 309 (2003).

    CAS  Google Scholar 

  52. H.G. Jin, T. Okamoto and M. Ishida, Energy Fuel, 12, 1272 (1998).

    Article  CAS  Google Scholar 

  53. I. Halikia, P. Neou-Syngouna and D. Kolitsa, Thermochim. Acta, 320(1–2), 75 (1998).

    Article  CAS  Google Scholar 

  54. C. Perkins, P. Lichty and A.W. Weimer, Chem. Eng. Sci., 62(21), 5952 (2007).

    Article  CAS  Google Scholar 

  55. A. Pineau, N. Kanari and I. Gaballah, Thermochim. Acta, 447(1), 89 (2006).

    Article  CAS  Google Scholar 

  56. M.M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 65, 98 (2010).

    Article  CAS  Google Scholar 

  57. M.M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 63, 4433 (2008).

    Article  CAS  Google Scholar 

  58. Y.Q. Sun, S. Sridhar, S. Seetharaman, H. Wang, L. L. Liu, X.D. Wang and Z.T. Zhang, Sci. Rep., 6, 1 (2016), DOI:10.1038/srep22323.

    Article  Google Scholar 

  59. M.M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 65, 98 (2010).

    Article  CAS  Google Scholar 

  60. M.M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 63, 4433 (2008).

    Article  CAS  Google Scholar 

  61. J.D. Hancock and J. H. Sharp, J. Am. Ceram. Soc., 55(2), 74 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Yu, Q., Wang, T. et al. Kinetics of perovskite-like oxygen carriers for chemical looping air separation. Korean J. Chem. Eng. 35, 626–636 (2018). https://doi.org/10.1007/s11814-017-0332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0332-6

Keywords

Navigation