Skip to main content
Log in

Thermoanalytical investigation of drug–excipient interaction

Part II. Activated mixtures of piroxicam with cellulose and chitosan

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Piroxicam–excipient (chitosan or cellulose) mixtures after mechanical activation were investigated using DSC. Crystallization of amorphous piroxicam was detected near 80°C in the mixtures of the components activated separately. If the components in the mixture are activated together, amorphous piroxicam does not crystallize at heating.

Both excipients interact with piroxicam, decreasing its melting point and enthalpy of melting. Mechanical activation intensifies the interaction, decreasing the melting point by 8°C and reducing the enthalpy of melting two times.

Both excipients interact identically with piroxicam, affecting identically its melting parameters. Nevertheless, the two excipients affect its solubility in water very differently. Cellulose does not change the solubility, but chitosan increases it ten times. The mechanism of piroxicam dissolution from the mixture with an excipient is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T Durig AR Fassihi (1993) Int. J. Pharm. 97 161 Occurrence Handle1:CAS:528:DyaK3sXmtFSmsLo%3D Occurrence Handle10.1016/0378-5173(93)90136-4

    Article  CAS  Google Scholar 

  2. N Munoz C Ferrero A Munoz-Ruiz MV Velasco MR Jimenez-Castellanos (1998) Drug Dev. Ind. Pharm. 24 785 Occurrence Handle1:CAS:528:DyaK1cXktl2iurs%3D

    CAS  Google Scholar 

  3. P Mura A Manderioli G Bramanti S Furlanetto S Pinzauti (1995) Int. J. Pharm. 119 71 Occurrence Handle1:CAS:528:DyaK2MXkvFGqt7c%3D Occurrence Handle10.1016/0378-5173(94)00374-E

    Article  CAS  Google Scholar 

  4. MA Holgado M Fernandez-Arevalo JM Gines I Caraballo AM Rabasco (1995) Pharmazie 50 195 Occurrence Handle1:CAS:528:DyaK2MXkvFKqu74%3D

    CAS  Google Scholar 

  5. CEP Malan MM De Villiers AP Lotter (1997) Drug Dev. Ind. Pharm. 23 533 Occurrence Handle1:CAS:528:DyaK2sXivFyiu7o%3D Occurrence Handle10.3109/03639049709149816

    Article  CAS  Google Scholar 

  6. G Bruni L Amici V Berbenni A Marini A Orlandi (2002) J. Therm. Anal. Cal. 68 561 Occurrence Handle1:CAS:528:DC%2BD38XkvFegsL8%3D Occurrence Handle10.1023/A:1016052121973

    Article  CAS  Google Scholar 

  7. V. A. Drebushchak, T. P. Shakhtshneider, S. A. Apenina, T. N. Drebushchak, A. S. Medvedeva, L. P. Safronova and V. V. Boldyrev, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-005-7024-x.

  8. GL Ivashchenko TP Shakhtshneider VV Boldyrev NG Bazarnova AS Medvedeva LP Safronova (2003) Mendeleev Commun. 13 3 Occurrence Handle10.1070/MC2003v013n01ABEH001644 Occurrence Handle1:CAS:528:DC%2BD3sXjtFGgs7w%3D

    Article  CAS  Google Scholar 

  9. S. A. Apenina, T. P. Shakhtshneider, A. S. Medvedeva, L. P. Safronova and V. V. Boldyrev, Composites of piroxicam with chitosan and cellulose obtained by mechanical activation. Abstr. Int. Conf. ‘Mechanochemical Synthesis and Sintering’, Novosibirsk, Russia, June 14–18, 2004, p. 209.

  10. TP Shakhtshneider VV Boldyrev (1999) Mechanochemical synthesis and mechanical activation of drugs. In: Reactivity of Molecular Solids John Wiley and Sons Ltd. England 271

    Google Scholar 

  11. VA Drebushchak (2005) J. Therm. Anal. Cal. 79 213 Occurrence Handle1:CAS:528:DC%2BD2MXhs1ahtbs%3D Occurrence Handle10.1007/s10973-004-0586-1

    Article  CAS  Google Scholar 

  12. KC Jindal RS Chaudhary SS Gangwal AK Singla S Khanna (1994) J. Chromatogr. A 685 195 Occurrence Handle1:CAS:528:DyaK2MXitFOksrw%3D Occurrence Handle10.1016/0021-9673(94)00730-6

    Article  CAS  Google Scholar 

  13. GM Eccleston (1997) Colloids Surf. A 123 169 Occurrence Handle10.1016/S0927-7757(96)03846-0

    Article  Google Scholar 

  14. EA Schmitt K Peck Y Sun JM Geoffroy (2001) Thermochim. Acta 380 175 Occurrence Handle1:CAS:528:DC%2BD3MXos1ChsLg%3D Occurrence Handle10.1016/S0040-6031(01)00668-2

    Article  CAS  Google Scholar 

  15. VJ Ndlebe ME Brown BD Glass (2004) J. Therm. Anal. Cal. 77 445 Occurrence Handle1:CAS:528:DC%2BD2cXmvFSmuro%3D Occurrence Handle10.1023/B:JTAN.0000038985.43887.48

    Article  CAS  Google Scholar 

  16. SC Pinzaru I Pavel N Leopold W Kiefer (2004) J. Raman Spectrosc. 35 338 Occurrence Handle1:CAS:528:DC%2BD2cXktlKkurk%3D Occurrence Handle10.1002/jrs.1153

    Article  CAS  Google Scholar 

  17. RO Macedo TG do Nascimento JWE Veras (2002) J. Therm. Anal. Cal. 67 483 Occurrence Handle1:CAS:528:DC%2BD38Xit1CmsLs%3D Occurrence Handle10.1023/A:1013901332759

    Article  CAS  Google Scholar 

  18. FS de Souza RO Macedo JWE Veras (2002) Thermochim. Acta 392 99 Occurrence Handle10.1016/S0040-6031(02)00090-4

    Article  Google Scholar 

  19. A Marini V Berbenni M Pegoretti G Bruni P Cofrancesco C Sinistri M Villa (2003) J. Therm. Anal. Cal. 73 547 Occurrence Handle1:CAS:528:DC%2BD3sXnslGisbs%3D Occurrence Handle10.1023/A:1025478129417

    Article  CAS  Google Scholar 

  20. A Marini V Berbenni S Moioli G Bruni P Cofrancesco C Margheriti M Villa (2003) J. Therm. Anal. Cal. 73 529 Occurrence Handle1:CAS:528:DC%2BD3sXnslGisbo%3D Occurrence Handle10.1023/A:1025426012578

    Article  CAS  Google Scholar 

  21. GGG Oliveira HG Ferraz JSR Matos (2005) J. Therm. Anal. Cal. 79 267 Occurrence Handle1:CAS:528:DC%2BD2MXkt1Ciu70%3D Occurrence Handle10.1007/s10973-005-0047-5

    Article  CAS  Google Scholar 

  22. AR Sheth JW Lubach EJ Munson FX Muller DJW Grant (2005) J. Am. Chem. Soc. 127 6641 Occurrence Handle1:CAS:528:DC%2BD2MXjtFeitLY%3D Occurrence Handle10.1021/ja045823t

    Article  CAS  Google Scholar 

  23. Y Nakai E Fukuoka S Nakajima K Yamamoto (1977) Chem. Pharm. Bull. 25 3340 Occurrence Handle1:CAS:528:DyaE1cXhtFSnt70%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V., Shakhtshneider, T., Apenina, S. et al. Thermoanalytical investigation of drug–excipient interaction. J Therm Anal Calorim 86, 303–309 (2006). https://doi.org/10.1007/s10973-005-7440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7440-y

Keywords

Navigation