Skip to main content
Log in

Thermogravimetric analysis of carbide slag

A potential transesterification catalyst validation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Potential of carbide slag as transesterification catalyst is validated. Combined with X-ray fluorescence for ingredient determination, X-ray diffraction for textural phase analysis, scanning electron microscope for surface morphology observation and Hammett indicator for basic strength mensuration, thermal event of carbide slag is investigated through thermogravimetric analysis to estimate the potential of this calcium-based industrial waste as transesterification catalyst. Further, kinetic parameters are calculated through model-free method, where the experiments are conducted at temperature heating rates of 5, 10, 15, and 20 K min−1. As for activation energy and reaction order, Vyazovkin method and Avrami theory are respectively mentioned. Meanwhile, catalytic performance of carbide slag is labeled by transesterification efficiency and calcium hydroxide is conditionally mentioned for comparison. In conclusion, potential of carbide slag as transesterification catalyst is adequately validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev. 2012;16:2070–93.

    Article  Google Scholar 

  2. Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energ. 2010;87:1083–95.

    Article  CAS  Google Scholar 

  3. Lam MK, Lee KT, Mohamed AR. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv. 2010;28:500–18.

    Article  CAS  Google Scholar 

  4. Borges ME, Diaz L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew Sust Energ Rev. 2012;16:2839–49.

    Article  CAS  Google Scholar 

  5. Ho WWS, Ng HK, Gan S. Development and characterization of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production. Bioresour Technol. 2012;125:158–64.

    Article  CAS  Google Scholar 

  6. Chakraborty R, Bepari S, Banerjee A. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. Bioresource Technol. 2011;102:3610–8.

    Article  CAS  Google Scholar 

  7. Ngamcharussrivichai C, Nunthasanti P, Tanachai S, Bunyakiat K. Biodiesel production through transesterification over natural calciums. Fuel Process Technol. 2010;91:1409–15.

    Article  CAS  Google Scholar 

  8. Kouzu M, Hidaka J. Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel. 2012;93:1–12.

    Article  CAS  Google Scholar 

  9. Boro J, Deka D, Thakur AJ. A review on solid oxide derived from waste shells as catalyst for biodiesel production. Renew Sust Energ Rev. 2012;16:904–10.

    Article  CAS  Google Scholar 

  10. Li YJ, Liu HL, Sun RY, Wu SM, Lu CM. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature. J Therm Anal Calorim. 2012;110:685–94.

    Article  CAS  Google Scholar 

  11. Cao JX, Liu F, Lin Q, Zhang Y. Hydrothermal synthesis of xonotlite from carbide slag. Prog Nat Sci. 2008;18:1147–53.

    Article  CAS  Google Scholar 

  12. Li YJ, Sun RY, Liu CT, Liu HL, Lu CM. CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles. Int J Greenh Gas Con. 2012;9:117–23.

    Article  Google Scholar 

  13. Tonsuaadu K, Gross KA, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110:647–59.

    Article  CAS  Google Scholar 

  14. Monesh D, Pittman CU Jr, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuel. 2006;20:848–89.

    Article  Google Scholar 

  15. Farias RMC, Conceicao MM, Candeia RA, Silva MCD, Fernandes VJ Jr, Souza AG. Evaluation of the thermal stability of biodiesel blends of castor oil and passion fruit. J Therm Anal Calorim. 2011;106:651–5.

    Article  CAS  Google Scholar 

  16. Niu SL, Lu CM, Han KH, Zhao JL. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. J Therm Anal Calorim. 2009;98:267–74.

    Article  CAS  Google Scholar 

  17. Acikalin K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

    Article  CAS  Google Scholar 

  18. Marian E, Tita B, Jurca T, Fulias A, Vicas L, Tita D. Thermal behavior of erythromycin-active substance and tablets. J Therm Anal Calorim. 2013;111:1025–31.

    Article  CAS  Google Scholar 

  19. Omrani A, Rostami AA, Ravari F. Advanced isoconversional and mater plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim. 2013;111:677–83.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Sbirrazzuoli N. Confidence intervals for the activation energy estimated by few experiments. Anal Chim Acta. 1997;355:175–80.

    Article  CAS  Google Scholar 

  21. Niu SL, Han KH, Lu CM, Sun RY. Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate. Appl Energ. 2010;87:2237–42.

    Article  CAS  Google Scholar 

  22. Otero M, Gomez X, Garcia AI, Moran A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials coal and sewage sludge. J Therm Anal Calorim. 2008;93:619–26.

    Article  CAS  Google Scholar 

  23. Martin D. Application of Kolmogorov–Johnson–Mehl–Avrami equations to non-isothermal conditions. Comp Mater Sci. 2010;47:796–800.

    Article  CAS  Google Scholar 

  24. Yin JZ, Ma Z, Shang ZY, Hu DP, Xiu ZL. Biodiesel production from soybean oil transesterification in subcritical methanol with K3PO4 as catalyst. Fuel. 2012;93:284–7.

    Article  CAS  Google Scholar 

  25. Boey PL, Ganesan S, Lim SX, Lim SL, Maniam GP, Khairuddean M. Utilization of BA (boiler ash) as catalyst for transesterification of palm olein. Energy. 2011;36:5791–6.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51206098), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province, China (BS2012NJ005), and the China Postdoctoral Science Foundation (2012M511021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, S., Liu, M., Lu, C. et al. Thermogravimetric analysis of carbide slag. J Therm Anal Calorim 115, 73–79 (2014). https://doi.org/10.1007/s10973-013-3268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3268-z

Keywords

Navigation