Skip to main content

Advertisement

Log in

Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Carbide slag was used as an activator to improve the activity of anhydrous phosphogypsum. Carbide slag could greatly improve the mechanical strength of anhydrous phosphogypsum than K2SO4. The compressive strength of 11 wt% carbide slag and 1 wt% K2SO4 activated anhydrous phosphogypsum increased greatly to 8.6 MPa at 3 d, and 11.9 MPa at 7 d, and 16.0 MPa at 28 d, respectively. The rate of hydration heat was accelerated and the total hydration heat was increased, and more calcium sulfate dihydrate was formed and cross-linked with other parts which improved the compressive strength of anhydrous phosphogypsum under the effects of different activators. It was indicated that carbide slag was a highly effective and cost-efficient activator. The result provides a highly effective and low-cost method which results in a novel and high value-added method for the utilization of phosphogypsum in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pérez-López R, Álvarez-Valero A M, Nieto J M. Changes in Mobility of Toxic Elements during the Production of Phosphoric Acid in the Fertilizer Industry of Huelva (SW Spain) and Environmental Impact of Phosphogypsum Wastes[J]. J. Hazard Mater., 2007, 148: 745–750

    Article  Google Scholar 

  2. Pérez-López R, Carrero S, Cruz-Hernández P, et al. Sulfate Reduction Processes in Salt Marshes Affected by Phosphogypsum: Geochemical Influences on Contaminant Mobility[J]. J. Hazard Mater., 2018, 350: 154–161

    Article  Google Scholar 

  3. Carlos R C, Francisco M, Rafael P L, et al. Valorization of Wastes from the Fertilizer Industry: Current Status and Future Trends[J]. J. Clean. Prod., 2018, 174: 678–690

    Article  Google Scholar 

  4. Mohammed F, Biswas W K, Yao H, et al. Sustainability Assessment of Symbiotic Processes for the Reuse of Phosphogypsum[J]. J. Clean. Prod., 2018, 188: 497–507

    Article  CAS  Google Scholar 

  5. Yang J K, Liu W C, Zhang L L, et al. Preparation of Load-bearing Building Materials from Autoclaved Phosphogypsum[J]. Constr. Build. Mater., 2009, 23(2): 687–693

    Article  Google Scholar 

  6. Zhou J, Sheng Z M, Li T T, et al. Preparation of Hardened Tiles from Waste Phosphogypsum by A New Dintermittent Pressing Hydration[J]. Ceram. Int., 2016, 42(6): 7237–7245

    Article  CAS  Google Scholar 

  7. Rashad A M. Phosphogypsum as A Construction Material[J]. J. Clean. Prod., 2017, 166: 732–743

    Article  CAS  Google Scholar 

  8. Chen Q S, Zhang Q L, Fourie A, et al. Utilization of Phosphogypsum and Phosphate Tailings for Cemented Paste Backfill[J]. J. Environ. Manage., 2017, 201: 19–27

    Article  CAS  Google Scholar 

  9. Li X, Du J, Gao L, et al. Immobilization of Phosphogypsum for Cemented Paste Backfill and Its Environmental Effect[J]. J. Clean. Prod., 2017, 156: 137–146

    Article  CAS  Google Scholar 

  10. Wang Q, Jia R Q. A Novel Gypsum-Based Self-Leveling Mortar Produced by Phosphorus Building Gypsum[J]. Constr. Build. Mater., 2019, 226: 11–20

    Article  CAS  Google Scholar 

  11. Aminul H M, Chen B, Liu Y T, et al. Improvement of Physico-mechanical and Microstructural Properties of Magnesium Phosphate Cement Composites Comprising with Phosphogypsum[J]. J. Clean. Prod., 2020, 261: 121–268

    Google Scholar 

  12. Contreras M, Pérez-López R, Gázquez M J, et al. Fractionation and Fluxes of Metals and Radionuclides During the Recycling Process of Phosphogypsum Wastes Applied to Mineral CO2 Sequestration[J]. Waste Manage., 2015, 45: 412–419

    Article  CAS  Google Scholar 

  13. Lu W D, Ma B G, Su Y, et al. Preparation of Alpha-hemihydrate Gypsum from Phosphogypsum in Recycling CaCl2 Solution[J]. Constr. Build. Mater., 2019, 214: 399–412

    Article  CAS  Google Scholar 

  14. Zhang Y H, Wang F, Huang H W, et al. Gypsum Blocks Produced from TiO2 Production By-Products[J]. Environ. Technol., 2016, 37(9): 1094–1100

    Article  CAS  Google Scholar 

  15. Ma B G, Jin Z H, Su Y, et al. Utilization of Hemihydrate Phosphogypsum for the Preparation of Porous Sound Absorbing Material[J]. Constr. Build. Mater., 2020, 234: 117–346

    Article  Google Scholar 

  16. Chen Q S, Zhang Q L, Qi C C, et al. Recycling Phosphogypsum and Construction Demolition Waste for Cemented Paste Backfill and Its Environmental Impact[J]. J. Clean. Prod., 2018, 186: 418–429

    Article  CAS  Google Scholar 

  17. Geraldo R H, Costa A R D, Kanai J, et al. Calcination Parameters on Phosphogypsum Waste Recycling[J]. Constr. Build. Mater., 2020, 256: 119–406

    Article  Google Scholar 

  18. Yang M, Qian J S, Pan L, et al. Hydration of Activated Anhydrate Phosphogypsum[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2013, 28(03): 535–537

    Article  CAS  Google Scholar 

  19. Singh M, Garg M. Activation of Gypsum Anhydrite-Slag Mixtures[J]. Cem. Concr. Res., 1995, 25(2): 332–338

    Article  CAS  Google Scholar 

  20. Yang M, Qian J S. Activation of Anhydrate Phosphogypsum by K2SO4 and Hemihydrate Gypsum[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(6): 1103–1107

    Article  CAS  Google Scholar 

  21. Wang Y L, Dong S J, Liu L L, et al. Using Calcium Carbide Slag as One of Calcium-Containing Raw Materials to Produce Cement Clinker[J]. Materials Sci. Forum., 2013, 743–744: 171–174

    Article  Google Scholar 

  22. Singh N B. The Activation Effect of K2SO4 on the Hydration of Gypsum Anhydrite, CaSO4(II)[J]. J. Am. Ceram. Soc., 2005, 88(1): 196–201

    Article  CAS  Google Scholar 

  23. Tan H B, Zhang X, He X Y, et al. Utilization of Lithium Slag by Wet-grinding Process to Improve the Early Strength of Sulphoaluminate Cement Paste[J]. J. Clean. Prod., 2018, 205: 536–551

    Article  CAS  Google Scholar 

  24. He X, Ma M, Su Y, et al. The Effect of Ultrahigh Volume Ultrafine Blast Furnace Slag on the Properties of Cement Pastes[J]. Constr. Build. Mater., 2018, 189: 438–447

    Article  CAS  Google Scholar 

  25. Allahverdi A, Mahinroosta M. Mechanical Activation of Chemically Activated High Phosphorous Slag Content Cement[J]. Powder Technol., 2013, 245: 182–188

    Article  CAS  Google Scholar 

  26. Fernández-Jiménez A, Puertas F. Setting of Alkali-activated Slag Cement. Influence of Activator Nature[J]. Adv. Cem. Res., 2001, 13(3): 115–121

    Article  Google Scholar 

  27. Yang L C, Guan B H, Wu Z B, et al. Solubility and Phase Transitions of Calcium Sulfate in KCl Solutions Between 85 and 100 °C[J]. Ind. Eng. Chem. Res., 2009, 48(16): 7773–7779

    Article  CAS  Google Scholar 

  28. Jin Z H, Ma B G, Su Y, et al. Effect of Calcium Sulphoaluminate Cement on Mechanical Strength and Waterproof Properties of Beta-Hemihydrate Phosphogypsum[J]. Constr. Build. Mater., 2020, 242: 118–198

    Article  Google Scholar 

  29. Li W T, Yi Y L. Use of Carbide Slag from Acetylene Industry for Activation of Ground Granulated Blast-furnace Slag[J]. Constr. Build. Mater., 2020, 238: 117–713

    Article  Google Scholar 

  30. Gameiro A, Silva S A, Faria P, et al. Physical and Chemical Assessment of Lime-metakaolin Mortars: Influence of Binder: Aggregate Ratio[J]. Cem. Concr. Compos., 2014, 45: 264–271

    Article  CAS  Google Scholar 

  31. Cody A M, Cody R D. Evidence for Micro-biological Induction of 101 Montmartre Twinning of Gypsum (CaSO4•2H2O)[J]. J. Cryst. Growth., 1989, 98(4): 721–30

    Article  CAS  Google Scholar 

  32. Li H, Zhang H, Li L, et al. Utilization of Low-Quality Desulfurized Ash from Semi-dry Flue Gas Desulfurization by Mixing with Hemihydrate Gypsum[J]. Fuel, 2019, 255: 115–783

    Google Scholar 

  33. Hajjouji A E, Murat M. Strength Development and Hydrate Formation Rate. Investigation on Anhydrite Binders[J]. Cem. Concr. Res.,1987, 17(5): 814–820

    Article  Google Scholar 

  34. Yang L, Zhang Y S, Yan Y. Utilization of Original Phosphogypsum as Raw Material for the Preparation of Self-Leveling Mortar[J]. J. Clean. Prod., 2016, 127: 204–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Su  (苏英).

Additional information

Funded by Innovation Group Fund Project of Hubei Province (No.2020CFA039) and the Key Research and Development Program of Hubei Province(No.2020BCA077)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xiong, G., Su, Y. et al. Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 392–399 (2021). https://doi.org/10.1007/s11595-021-2422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2422-x

Key words

Navigation