Skip to main content
Log in

Thermal properties and interactions of l-proline in aqueous solutions of NaCl or KCl at different temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The enthalpies of solution of l-proline in aqueous electrolyte solutions within the electrolyte molality range up to 4.9 mol kg−1 of NaCl and up to 4.0 mol kg−1 of KCl at 288, 298 and 313 K have been measured by the calorimetric method. Enthalpies of transfer of l-proline from water to aqueous electrolyte solutions up to saturation have been derived at 273–348 K. The enthalpic and heat capacity parameters of pair and triplet interaction of l-proline with electrolyte in water have been evaluated. Enthalpic parameters of pair interaction at 298 K have been compared to similar parameters for glycine and l-alanine. The temperature changes of reduced enthalpy, and also the change of entropy and reduced Gibbs energy of transfer of l-proline from water to aqueous electrolyte solution at temperature rise from 273 to 323 K have been determined. It has been shown that the entropy–enthalpy compensation takes place for transfer processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greighton TE. Proteins: structures and molecular properties. 2nd ed. New York: Freeman WH and Company; 1993. p. 507.

    Google Scholar 

  2. Kelley BP, Lilley TH. Aqueous solutions containing amino acids and peptides. 4. The enthalpy of solution of glycine in water and in aqueous sodium chloride at 298.15 K. J Chem Thermodyn. 1978;10:703–4.

    Article  CAS  Google Scholar 

  3. Lilley TH, Moses E, Tasker IR. Aqueous solutions containing amino acids and peptides. Part 10. Enthalpy of interaction of glycine with some alkali metal chlorides at 298.15 K. J Chem Soc Faraday I. 1980;76:906–14.

    Article  CAS  Google Scholar 

  4. Lilley TH, Tasker IR. Aqueous solutions containing amino acids and peptides. Part 12. The enthalpy of interaction of α-alanine, α-aminobutyric acid, norvalin and norleucine with sodium chloride at 298.15. J Chem Soc Faraday Trans 1. 1982;78:1–6.

    Article  CAS  Google Scholar 

  5. Palecz B. Enthalpies of solution of glycine in aqueous electrolyte solutions at 298.15 K. Thermochim Acta. 1991;180:199–202.

    Article  CAS  Google Scholar 

  6. Yan L, Wei X, Jinsuo L. The enthalpies of solution of α-alanine in water and in some alkali metal chloride solutions at 298.15 K. Thermochim Acta. 1994;246:49–55.

    Article  Google Scholar 

  7. Gallargo MA, Lilley TH, Linsdell TH, Lu Y, Otin S, Ward AJ. Aqueous solutions containing amino acids and peptides. Part 30. The enthalpies of interaction of some alkali-metal halides with some amino acids at 25 °C. J Chem Soc Faraday Trans. 1996;92:4983–6.

    Article  Google Scholar 

  8. Palecz B. Thermochemical properties of l-α-amino acids in electrolyte-water mixtures. Fluid Phase Equilib. 2000;167:253–61.

    Article  CAS  Google Scholar 

  9. Wang X, Li X, Lin R, Sun D. Enthalpies of dilution of glycine, l-alanine and l-serine in aqueous potassium chloride solutions. Thermochim Acta. 2005;425:31–7.

    Article  CAS  Google Scholar 

  10. Mezhevoi IN, Badelin VG. Dissolution enthalpies of dl-α-alanine and dipeptides of aliphatic series in aqueous solutions of KCl. Biofizika. 2009;54:984–7.

    CAS  Google Scholar 

  11. Palecz B. Enthalpic pair interaction coefficient between zwitterions of l-α-amino acids and urea molecule as a hydrophobicity parameter of amino acid side chains. J Am Chem Soc. 2005;127:17768–71.

    Article  CAS  Google Scholar 

  12. Rudolf AS, Crowe JH. A calorimetric and infrared spectroscopic study of the stabilizing solute proline. Biophys J. 1986;50:423–30.

    Article  Google Scholar 

  13. Korolev VP, Antonova OA, Smirnova NL. Thermodynamics of aqueous solutions of l-proline at 273–328 K. Russ J Phys Chem A. 2010;84:1827–31.

    Article  CAS  Google Scholar 

  14. Korolev VP, Antonova OA, Smirnova NL. Dissolution enthalpies of l-proline and its interactions with methanol, 2-propanol, ethylene glycol and glycerine in aqueous solution at 298.15 K. Russ J Phys Chem A. 2010;84:2056–60.

    Article  CAS  Google Scholar 

  15. Korolev VP, Antonova OA, Smirnova NL. Thermal properties and interparticle interactions of l-proline, glycine and l-alanine in aqueous urea solutions at 288–318 K. J Therm Anal Calorim. 2012;108:1–7.

    Article  CAS  Google Scholar 

  16. Korolev VP, Antonova OA. Thermodinamic characteristics, structure and interactions of l-proline in aqueous alcohols and urea solutions. J Struct Chem. 2013; (in print).

  17. Kustov AV, Emel’yanov AA, Syschenko AF, Krest’yaninov MA, Zheleznyak NI, Korolev VP. Calorimetric setup for measuring of heat effects of processes in solutions. Russ J Phys Chem. 2006;80:1532–6.

    Article  CAS  Google Scholar 

  18. McMillan WG, Mayer JE. The statistical thermodynamics of multicomponent systems. J Chem Phys. 1945;13:276–305.

    Article  CAS  Google Scholar 

  19. Desnoyers JE, Perron G, Avédikian L, Morel JP. Enthalpies of the urea-tert-butanol-water system at 25 °C. J Solut Chem. 1976;5:631–44.

    Article  CAS  Google Scholar 

  20. Barone G, Elia V, Rizzo E. Excess enthalpies of aqueous ternary solutions of urea and polyols at 25 °C. J Solut Chem. 1982;11(10):687–98.

    Article  CAS  Google Scholar 

  21. Piekarski H, Piekarska A, Taniewska-Osinska S. Dissolution enthalpy of NaI in water–alcohol mixtures at 288.15 and 308.15 K. Enthalpy of interaction in electrolyte–alcohol–water systems. Can J Chem. 1984;62:856–9.

    Article  CAS  Google Scholar 

  22. Piekarski H, Tkaczyk M. Thermochemical properties NaI solutions in water-2-methoxyethanol and water-2-ethoxyethanol mixtures. The temperature dependences of enthalpic pair interaction coefficients in water solution. Thermochim Acta. 1987;122:377–88.

    Article  CAS  Google Scholar 

  23. Palecz B, Piekarski H, Romanowski S. Studies on homogeneous interactions between zwitterions of several l-α-amino acids in water at a temperature of 298.15 K. J Mol Liq. 2000;84:279–88.

    Article  CAS  Google Scholar 

  24. Rabinovich VA, Khavin ZYa. Short chemical handbook. Leningrad: Khimiya; 1978. p. 392.

    Google Scholar 

  25. Criss CM, Cobble JW. The thermodynamic properties of high temperature aqueous solutions. I. Standard partial molal heat capacities of sodium chloride and barium chloride from 0 to 100°. J Am Chem Soc. 1961;83:3223–8.

    Article  Google Scholar 

  26. Barclay IM, Butler JAV. The entropy of solution. Trans Faraday Soc. 1938;34:1445–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work is partially supported by the Russian fund of basic researches (the Grant No. 12-03-97508-r_center_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Korolev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolev, V.P., Antonova, O.A. Thermal properties and interactions of l-proline in aqueous solutions of NaCl or KCl at different temperatures. J Therm Anal Calorim 115, 955–960 (2014). https://doi.org/10.1007/s10973-013-3253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3253-6

Keywords

Navigation