Skip to main content
Log in

Comparison of solar silicon feedstock

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the major factors in reducing a cost of commercial solar cells is the lifetime of the photovoltaic material. In this work, a deterioration of Si generated by solvent metal gathering method (SMG) and Si removed from damaged solar cells is analyzed and compared with electronic grade Si. The differences in heating and cooling cycles on the DTA curves of different solar grade Si and Cu–Si mixtures are compared. A nonequilibrium exothermic reaction in Si generated by SMG method is recorded in samples aged in room atmosphere for 1 year. The outcomes of the cooling cycles after the DTA analyses for various solar grades Si were not significantly differentiated from the referred electronic grade Si indicating that recrystallization of aged Si diminishes the problem related to agglomeration of Cu and oxygen on the surface of Si solar grade particles. The DTA tests showed that recrystallized Si from the deteriorated solar cells can be recycled as feedstock materials for solar cells applications while Si generated by SMG method can be used for blending in order to achieve a long lifetime of Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jester T. Crystalline silicon manufacturing progress. Prog Photovolt. 2002;10:99–106.

    Article  CAS  Google Scholar 

  2. Genieva S, Turmanova S, Dimitrova A, Vlaev L. Thermal degradation of rice husks and characterization of the products. J Therm Anal Calorim. 2008;93:387–96.

    Article  CAS  Google Scholar 

  3. Gu J, Fahrenkrug E, Maldonado S. Direct electrodeposition of crystalline silicon at low temperatures. J Am Chem Soc. 2013;135:1684–87.

    Google Scholar 

  4. Mitrašinović A. Photo-catalytic properties of silicon and its future in photovoltaic applications. Renew Sustain Energy Rev. 2011;15:3603–7.

    Article  Google Scholar 

  5. Abdyukhanov I, Abdyukhanov M, Kuz’min Y, Merkushkin V. Production of metallurgical silicon of enhanced quality for land-based solar cells. Met Sci Heat Treat. 2000;42:246–9.

    Article  CAS  Google Scholar 

  6. Arkhipov M, Dubovskiy A, Reu A, Mukhanov V, Smirnova S. Carbothermic synthesis of silicon in 150 kW DC arc furnace for solar applications. Silicon for the Chem and Sol Ind. IX, Oslo, Norway, 2008.

  7. Yoshikawa T, Morita K. Refining of silicon during its solidification from a Si–Al melt. J Cryst Growth. 2009;311:776–9.

    Article  CAS  Google Scholar 

  8. Gumaste J, Mohanty B, Galgali R, Syamaprasad U, Nayak B, Singh S, Jena P. Solvent refining of metallurgical grade silicon. Sol Energy Mater. 1987;16:289–96.

    Article  CAS  Google Scholar 

  9. Olesinski R, Abbaschian G. The copper–silicon system. Bull of Alloy Phase Diagr. 1986;7:170–8.

    Article  CAS  Google Scholar 

  10. Buonassisi T, Marcus M, Istratov A, Heuer M, Ciszek T, Lai B, Cai Z, Weber E. Analysis of copper-rich precipitates in silicon: chemical state, gettering, and impact on multicrystalline silicon solar cell material. J Appl Phys. 2005;97:063503.

    Article  Google Scholar 

  11. Mitrašinović A, Utigard T. Trace elements distribution in Cu–Si alloys. Chem Phys Lett. 2011;515:72–7.

    Article  Google Scholar 

  12. Mitrašinović A, Utigard T. Copper removal from hypereutectic Cu–si alloys by heavy liquid media separation. Metall Mater Trans B. 2012;43:379–87.

    Article  Google Scholar 

  13. Bronsveld P, Naber R, Geerligs L, Pozigun S, Syvertsen M, Knopf C, Kvande R. p and n-type mono and mc-Si solar cells using blended upgraded metallurgical grade silicon. 24th European Photovoltaic Solar Energy Conference and Exhibition 2009 21–25 September, Hamburg, Germany.

  14. Pavone A. Polysilicon for solar wafers. SRI Consulting, Process Econ Progr. PEP Report No.272, December 2009.

  15. Mitrašinović A, D’Souza R, Utigard T. Impurity removal and overall rate constant during low pressure treatment of liquid silicon. J Mater Process Technol. 2012;212:78–82.

    Article  Google Scholar 

  16. Grmela L, Škarvada P, Tománek P, Macků R, Smith S. Local investigation of thermal dependence of light emission from reverse-biased monocrystalline silicon solar cells. Sol Energy Mater & Sol Cells. 2012;96:108–11.

    Article  CAS  Google Scholar 

  17. Miller T. Use of TG/FT-IR in material characterization. J Therm Anal Calorim. 2011;106:249–54.

    Article  CAS  Google Scholar 

  18. Ould-Abbas A, Bouchaour M, Trari D, Chabane Sari N. The impact of drying phenomena and heat treatment on the structure of porous silicon. J Therm Anal Calorim. 2012;109:1347–51.

    Article  CAS  Google Scholar 

  19. Madarász J, Nagygyörgy V, Stathatos E, Pokol G. Ageing and thermal stability studies on quasi-solid composite electrolytes for Gra¨tzel-type solar cells. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-012-2904-3.

    Google Scholar 

  20. Boettinger W, Kattner U, Moon K, Perepezko DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing. J Natl Inst Stand Technol. 2006 Special Publication 960-15, U.S. Department of Commerce.

  21. Sułowska J, Wacławska I, Szumera M. Effect of copper addition on glass transition of silicate–phosphate glasses. J Therm Anal Calorim. 2012;109:705–10.

    Article  Google Scholar 

  22. DeWolf I. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond Sci Tech. 1996;11:139–54.

    Article  CAS  Google Scholar 

  23. Robles Hernandez F, De Cruz Rivera. Micro-Raman analysis of the Si particles present in Al–Si hypereutectic alloys in liquid and semi-solid states. J Adv Eng Mater. 2007;9:46–51.

    Article  Google Scholar 

  24. Schade M, Varlamova O, Reif J, Blumtritt H, Erfurth W, Leipner H. High-resolution investigations of ripple structures formed by femtosecond laser irradiation of silicon. Anal Bioanal Chem. 2010;396:1905–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar M. Mitrašinović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrašinović, A.M., Robles Hernández, F.C. Comparison of solar silicon feedstock. J Therm Anal Calorim 115, 177–183 (2014). https://doi.org/10.1007/s10973-013-3245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3245-6

Keywords

Navigation