Skip to main content
Log in

Thermal stability of pentoxifylline: active substance and tablets

Part 1. Kinetic study of the active substance under non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis is a routine method in the solution of pharmaceuticals problems such as the control of raw materials, to the determination of purity, to the qualitative and quantitative analysis of drug formulation, tests of thermal stability and compatibility, the determination of kinetic parameters, etc. The evaluation of thermal stability in the solid state is mostly made by analyzing their decomposition under isothermal and non-isothermal conditions. The present work reports the study on the thermal behavior of pentoxifylline—active substance and tablets, respectively, the determination of the kinetic parameters for the decomposition process under non-isothermal conditions and in a nitrogen atmosphere at five heating rates: 2.5, 5, 7.5, 10 and 15 °C min−1. For the determination of kinetic parameters from the TG/DTG curves, the following differential methods were utilized: Friedman isoconversional and Chang, respectively, integral methods: Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Li–Tang, and Starink. Thermoanalytical curves showed that the active substance is thermally more stable than the tablets. The decrease in stability was attributed to the presence of excipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang M, Xu YJ, Mengi AS, Dhala SN. Therapeutic potentials of pentoxifylline for treatment of cardiovascular diseases. J Coord Chem. 2004;58:775–85.

    Google Scholar 

  2. Kale R, Mathew D. Development of matrix diffusion controlled drug delivery system of pentoxifylline. Int J Pharm Pharm Sci. 2010;2:122–30.

    CAS  Google Scholar 

  3. Christova-Bagdassarian V, Angelov T, Atanassova M. UV-spectrometric and high performance liquid chromatographic determination of pentoxifylline in workplace air. J Univ Chem Technol Metall. 2007;42:223–7.

    Google Scholar 

  4. Kobelnik M, Lopes Cassimiro D, Ribeiro CA, Capela JMV, Dias DS, Crespi MS. Preparation and thermal study of Mg-diclofenac compound in solid state. J Therm Anal Calorim. 2012;108:213–8.

    Google Scholar 

  5. Fini A, Fasio G, Benetti L, Ghedini V. Thermal analysis of some diclofenac salts with alkyl and alkylhydroxy amines. Thermochim Acta. 2007;464:65–74.

    Article  CAS  Google Scholar 

  6. Mora Corvi P, Cirri M, Mura P. Differential scanning calorimetry as a screening technique in compatibility studies of DHEA extended release formulations. J Pharm Biomed Anal 2006;42:3–10.

    Google Scholar 

  7. Neto HS, Barros FAP, de Sousa Carvalho FM, Matos JR. Thermal analysis of prednicarbate and characterization of thermal decomposition product. J Therm Anal Calorim. 2010;102:277–83.

    Google Scholar 

  8. Macêdo RO, Aragão CFS, do Nascimento TG, Macêdo AMC. Application of thermogravimetry in the quality control of chloramphenicol tablets. J Therm Anal Calorim. 1999;56:1323–7.

    Google Scholar 

  9. Kerch G, Glonin A, Zicans J, Merijs Meri R. A DSC study of the effect of ascorbic acid on bound water content and distribution in chitosan-enriched bread rolls during storage. J Therm Anal Calorim. 2012;108:73–8.

    Google Scholar 

  10. Giordano F, Rossi A, Pasquali I, Bettini R, Frigo E, Gazzaniga A, Sangalli ME, Miles V, Catinella S. Thermal degradation and melting point determination of diclofenac. J Therm Anal Calorim. 2003;73:509–18.

    Article  CAS  Google Scholar 

  11. Picciochi R, Diogo HP, da Piedade MEM. Thermochemistry of paracetamol. J Therm Anal Calorim. 2010;99:391–401.

    Article  Google Scholar 

  12. Bannach G, Cervini P, Cavalheiro ETG, Ionashiro M. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine. Thermochim Acta. 2010;499:123–5.

    Article  CAS  Google Scholar 

  13. Iliescu T, Baia M, Miclăuş V. A Raman spectroscopic study of the diclofenac sodium-β-cyclodextrin interaction. Eur J Pharm Sci. 2004;22:487–95.

    Article  CAS  Google Scholar 

  14. Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108:219–26.

    Article  CAS  Google Scholar 

  15. Zayed MA, Hawash MF, Fahmey MA, El-Gizouli AMM. Investigation of ibuprofen drug using mass spectrometry, thermal analyses, and semi-empirical molecular orbital calculation. J Therm Anal Calorim. 2012;108:315–22.

    Article  CAS  Google Scholar 

  16. Li X, Wu Y, Gu D, Gan F. Thermal decomposition kinetics of nickel (II) and cobalt (II) azo barbituric acid complex. Thermochim Acta. 2009;493:85–9.

    Article  CAS  Google Scholar 

  17. Howell BA. Utility of kinetic analysis in the determination of reaction mechanism. J Therm Anal Calorim. 2006;85:165–7.

    Article  CAS  Google Scholar 

  18. Zhao L, Li Q, Cui Y, Wang J, Xu S, Chen X, Bi K. Thermal kinetic studies on the decompositions of cefuroxime lysine in different atmospheres and heating rates. J Therm Anal Calorim. 2012;108:269–73.

    Article  CAS  Google Scholar 

  19. Shukla S, Mishra AP. Non-isothermal degradation-based solid state kinetics study of copper (II) Schiff base complex, at different heating rates. J Therm Anal Calorim. 2012;107:111–7.

    Article  CAS  Google Scholar 

  20. Doyle CD. Series approximations to equation of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  21. Tiţa B, Fuliaş A, Bandur G, Rusu G, Tiţa D. Thermal stability of ibuprofen. Kinetic study under non-isothermal conditions. Rev Roum Chim. 2010;55:553–8.

    Google Scholar 

  22. Tiţa B, Fuliaş A, Rusu G, Tiţa D. Thermal behaviour of indomethacin—active substance and tablets kinetic study under non-isothermal conditions. Rev Chim (Bucureşti). 2009;60:1210–5.

    Google Scholar 

  23. Tiţa B, Fuliaş A, Tiţa D. Kinetic study of indomethacin under isothermal conditions. Rev Chim (Bucureşti). 2010;61:1037–41.

    Google Scholar 

  24. Tiţa B, Fuliaş A, Marian E, Tiţa D. Thermal behaviour of acetylsalicylic acid—active substance and tablets. Kinetic study under non-isothermal conditions. Rev Chim (Bucureşti). 2009;60:419–23.

    Google Scholar 

  25. Tiţa B, Fuliaş A, Marian E, Tiţa D. Thermal stability and decomposition kinetics under non-isothermal conditions of sodium diclofenac. Rev Chim (Bucureşti). 2009;60:524–8.

    Google Scholar 

  26. Tiţa B, Fuliaş A, Ştefănescu M, Marian E, Tiţa D. Kinetic study of decomposition of ibuprofen under isothermal conditions. Rev Chim (Bucureşti). 2011;62:216–21.

    Google Scholar 

  27. Tiţa B, Fuliaş A, Ştefănescu M, Marian E, Tiţa D. Kinetic study of sodium diclofenac under isothermal conditions. Rev Chim (Bucureşti). 2011;62:31–6.

    Google Scholar 

  28. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    Article  CAS  Google Scholar 

  29. Chrissafis K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Google Scholar 

  30. Saha B, Maiti AK, Ghoshal AK. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim Acta. 2006;444:46–52.

    Article  CAS  Google Scholar 

  31. Dickinson CF, Heal GR. A review of the ICTAC kinetics project, 2000: part 1. Isothermal results. Thermochim Acta. 2009;494:1–14.

    Article  CAS  Google Scholar 

  32. Dickinson CF, Heal GR. A review of the ICTAC kinetics project, 2000: part 2. Non-isothermal results. Thermochim Acta. 2009;494:15–25.

    Article  CAS  Google Scholar 

  33. Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68:131–9.

    Article  CAS  Google Scholar 

  34. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci. 1965;6C:183–7.

    Google Scholar 

  35. Chang WL. Decomposition behavior of polyurethanes via mathematical simulation. J Appl Polym Sci. 1994;53:1759–69.

    Article  CAS  Google Scholar 

  36. Flynn JH, Wall LA. A quick direct method for determination of activation energy from thermogravimetric data. J Polym Sci B. 1996;4:323–8.

    Article  Google Scholar 

  37. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  38. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  39. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–7.

  40. Li RC, Tang BT. A new method for analysing non-isothermal thermoanalytical data from solid state reactions. Thermochim Acta. 1999;325:43–6.

    Article  CAS  Google Scholar 

  41. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  42. Sbirrazzuoli N, Vincent L, Vyazovkin S. Comparison of several computational procedures for evaluating the kinetics of thermally stimulated condensed phase reactions. Chemom Intell Lab Syst. 2000;54:53–60.

    Article  CAS  Google Scholar 

  43. Galwey KA. Magnitudes of Arrhenius parameters for decomposition reactions of solids. Thermochim Acta. 1994;242:259–64.

    Article  CAS  Google Scholar 

  44. Genieva DS, Vlaev TL, Atanassov NA. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  45. Vlaev TL, Georgieva GV, Gospodinov GG. Kinetics of isothermal decomposition of ZnSeO3 and CdSeO3. J Therm Anal Calorim. 2005;79:163–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Tita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tita, B., Jurca, T. & Tita, D. Thermal stability of pentoxifylline: active substance and tablets. J Therm Anal Calorim 113, 291–299 (2013). https://doi.org/10.1007/s10973-013-3118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3118-z

Keywords

Navigation