Skip to main content
Log in

The equilibrium melting temperature and isothermal crystallisation kinetics of cyclic poly(butylene terephthalate) and styrene maleimide (c-PBT/SMI) blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The equilibrium melting point (\( T_{\text{m}}^{0} \)) and isothermal crystallisation kinetics of cyclic poly(butylene terephthalate) (c-PBT) and styrene maleimide (SMI) blends prepared by solid dispersion and in situ polymerisation of cyclic butylene terephthalate oligomers (CBT) within SMI were investigated. This c-PBT/SMI blend is a miscible semicrystalline–amorphous blend system. The \( T_{\text{m}}^{0} \) of c-PBT/SMI blends was determined using the Hoffman and Weeks method, while Avrami crystallisation kinetic model have been applied to study their isothermal crystallisation kinetics. It was found that \( T_{\text{m}}^{0} \) decreased with increasing SMI content in the blend compositions. All the crystallisation exotherms were obtained from differential scanning calorimetry under isothermal experimental conditions. The average value of Avrami exponent, n, is in the range of 2.4–2.8 for the primary crystallisation process for c-PBT and its blends, which suggest that heterogeneous nucleation of spherulites occurred and growth of spherulites was between two-dimensional and three-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wan C, Zhao F, Bao X, Kandasubramanian B, Duggan M. Surface characteristics of polyhedral oligomeric silsesquioxane modified clay and its application in polymerization of macrocyclic polyester oligomers. J Phys Chem B. 2008;112:11915–22.

    Article  CAS  Google Scholar 

  2. Tripathy AR, Elmoumni A, Winter HH, MacKnight WJ. Effects of catalyst and polymerization temperature on the in-situ polymerization of cyclic poly(butylene terephthalate) oligomers for composite applications. Macromolecules. 2005;38:709–15.

    Article  CAS  Google Scholar 

  3. Tripathy AR, MacKnight WJ, Kukureka SN. In-situ copolymerization of cyclic poly(butylene terephthalate) oligomers and caprolactone. Macromolecules. 2004;37:6793–800.

    Article  CAS  Google Scholar 

  4. Parton H, Baetsa J, Lipnikc P, Goderisb B, Devauxc J, Verpoest I. Properties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer. 2005;46:9871–80.

    Article  CAS  Google Scholar 

  5. Harsch M, Karger-Kocsis J, Apostolov AA. Crystallization-induced shrinkage, crystalline, and thermomechanical properties of in situ polymerized cyclic butylene terephthalate. J Appl Polym Sci. 2008;108:1455–61.

    Article  CAS  Google Scholar 

  6. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  7. Lotti N, Finelli L, Siracusa V, Munari A, Gazzano M. Synthesis and thermal characterization of poly(butylene terephthalate-co-thiodiethylene terephthalate) copolyesters. Polymer. 2002;43(16):4355–63.

    Article  CAS  Google Scholar 

  8. Mohd Ishak ZA, Shang PP, Karger-Kocsis J. A modulated DSC study on the in situ polymerization of cyclic butylene terephthalate oligomers. J Therm Anal Calorim. 2006;84(3):637–41.

    Article  CAS  Google Scholar 

  9. Ishak ZA, Gatos KG, Karger-Kocsis J. On the in-situ polymerization of cyclic butylene terephthalate oligomers: DSC and rheological studies. Polym Eng Sci. 2006;46:743–50.

    Article  Google Scholar 

  10. Brunelle DJ, Bradt JE, Serth-Guzzo J, Takekoshi T, Evans TL, Pearce EJ, Wilson PR. Semicrystalline polymers via ring-opening polymerization: preparation and polymerization of alkylene phthalate cyclic oligomers. Macromolecules. 1998;31:4782–90.

    Article  CAS  Google Scholar 

  11. Samsudin SA, Kukureka SN, Jenkins MJ. Miscibility in cyclic poly(butylene terephthalate) and styrene maleimide blends prepared by solid-dispersion and in situ polymerization of cyclic butylene terephthalate oligomers within styrene maleimide. J Appl Polym Sci. 2012;126:E290–7.

    Article  CAS  Google Scholar 

  12. Paul DR, Bucknall CB. Polymer blends. New York: Wiley; 2000.

    Google Scholar 

  13. Chiu HJ, Shu WJ, Huang JM. Crystallization kinetics of poly(trimethylene terephthalate)/poly(ether imide) blends. Polym Eng Sci. 2006;46(1):89–96.

    Article  CAS  Google Scholar 

  14. Hoffman JD, Weeks JJ. Melting process and equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A. 1962;66A(1):13–28.

    Article  CAS  Google Scholar 

  15. Nishi T, Wang TT, Kwei TK. Thermally induced phase separation behavior of compatible polymer mixtures. Macromolecules. 1975;8(2):227–34.

    Article  CAS  Google Scholar 

  16. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride) poly(methyl methacrylate) mixtures. Macromolecules. 1975;8(6):909–15.

    Article  CAS  Google Scholar 

  17. Chen HL, Porter RS. Spherulitic growth kinetics in miscible blends of poly(ether ether ketone) and poly(ether imide). J Polym Res. 1999;6(1):21–6.

    Article  CAS  Google Scholar 

  18. El-Shafee E, Saad GR, Fahmy SM. Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/cellulose acetate butyrate blends. Eur Polym J. 2001;37(10):2091–104.

    Article  CAS  Google Scholar 

  19. Qiu ZB, Komura M, Ikehara T, Nishi T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and poly(epsilon-caprolactone). Polymer. 2003;44(25):7749–56.

    Article  CAS  Google Scholar 

  20. Qiu ZB, Ikehara T, Nishi T. Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide). Polymer. 2003;44(10):3095–9.

    Article  CAS  Google Scholar 

  21. Qiu ZB, Komura M, Ikehara T, Nishi T. Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer. 2003;44(26):8111–7.

    Article  CAS  Google Scholar 

  22. Supaphol P, Apiwarithanakorn N, Krutphun P. Effect of small amount of poly(ethylene naphthalate) on isothermal crystallization and spherulitic morphology of poly(trimethylene terephthalate). Polym Test. 2007;26(8):985–1000.

    Article  CAS  Google Scholar 

  23. Zhang HL, Ren MQ, Chen QY, Sun SL, Sun XH, Zhang HX. Miscibility and crystallization behavior of PBT/epoxy blends. J Polym Sci Pol Phys. 2006;44(9):1320–30.

    Article  CAS  Google Scholar 

  24. Wu LM, Lisowski M, Talibuddin S, Runt J. Crystallization of poly(ethylene oxide) and melt-miscible PEO blends. Macromolecules. 1999;32(5):1576–81.

    Article  CAS  Google Scholar 

  25. Flory PJ. Principles of polymer chemistry. New York: Cornell; 1953.

    Google Scholar 

  26. Yokouchi M, Sakakibara Y, Chatani Y, Tadokoro H, Tanaka T, Yoda K. Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules. 1976;9(2):266–73.

    Article  CAS  Google Scholar 

  27. Boutevin B, Khamlichi M, Pietrasanta Y, Robin JJ. Synthesis and characterization of a new block-copolymer-poly(butylene terephthalate-co-olefin) application on PP PBT blend and PBT homopolymer. J Appl Polym Sci. 1995;55(2):191–9.

    Article  CAS  Google Scholar 

  28. Utracki LA. Polymer alloys and blends: thermodynamic and rheology. Munich: Hanser; 1989.

    Google Scholar 

  29. Moore ER, Pickelman DM. Synthesis of styrene maleimide copolymers and physical properties thereof. Ind Eng Chem Prod Res Dev. 1986;25(4):603–9.

    Article  CAS  Google Scholar 

  30. Fakirov S, editor. Handbook of thermoplastic polyesters. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  31. Lee LT, Woo EM. Miscible blends of poly(4-vinyl phenol)/poly(trimethylene terephthalate). Polym Int. 2004;53(11):1813–20.

    Article  CAS  Google Scholar 

  32. Qiu ZB, Yang WT. Crystallization kinetics and morphology of poly(butylene succinate)/poly(vinyl phenol) blend. Polymer. 2006;47(18):6429–37.

    Article  CAS  Google Scholar 

  33. Al-Mulla A, Mathew J, Shanks R. Isothermal crystallization studies of poly(butylene terephthalate) composites. J Polym Sci B. 2007;45(11):1344–53.

    Article  CAS  Google Scholar 

  34. Al Lafi AG, Hay JN, Parker DJ. The effect of proton irradiation on the melting and isothermal crystallization of poly(ether–ether–ketone). J Polym Sci B. 2008;46(11):1094–103.

    Article  CAS  Google Scholar 

  35. Avrami M. Kinetic of phase change I: general theory. J Chem Phys. 1939;7(12):1103–13.

    Article  CAS  Google Scholar 

  36. Booth A, Hay JN. The use of differential scanning calorimetry to study polymer crystallization kinetics. Polymer. 1969;10:95–104.

    Article  CAS  Google Scholar 

  37. Jenkins MJ, Cao Y, Kukureka SN. The effect of molecular weight on the crystallization kinetics and equilibrium melting temperature of poly(tetramethylene ether glycol). Polym Adv Technol. 2006;17:1–5.

    Article  CAS  Google Scholar 

  38. Lehmann B, Karger-Kocsis J. Isothermal and non-isothermal crystallisation kinetics of pCBT and PBT. J Therm Anal Calorim. 2009;95(1):221–7.

    Article  CAS  Google Scholar 

  39. Jenkins MJ. Crystallisation in miscible blends of PEEK and PEI. Polymer. 2001;42:1981–6.

    Article  CAS  Google Scholar 

  40. Wunderlich B. Macromolecular physics. London: Academic Press; 1976.

    Google Scholar 

  41. Lauritzen JI, Hoffman JD. Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys. 1973;44(10):4340–52.

    Article  CAS  Google Scholar 

  42. Cebe P, Hong SD. Crystallization behaviour of poly(ether–ether–ketone). Polymer. 1986;27(8):1183–92.

    Article  CAS  Google Scholar 

  43. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17(1):71–3.

    Article  CAS  Google Scholar 

  44. Miller S. Macrocyclic polymer from cyclic oligomers of polybutylene terephthalate. University of Massachusetts; 1998.

  45. Avella M, Martuscelli E. Poly-d(-)(3-hydroxybutyrate) poly(ethylene oxide) blends—phase diagram, thermal and crystallization behavior. Polymer. 1988;29(10):1731–7.

    Article  CAS  Google Scholar 

  46. Lu J, Qiu Z, Yang W. Crystallization kinetics and hydrophilicity improvement of biodegradable poly(butylene succinate) in its miscible blends with poly(ethylene oxide). Macromol Mater Eng. 2008;293:930–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from the Ministry of Higher Education Malaysia (MOHE), Universiti Teknologi Malaysia (UTM), Cyclics Corporation and Sartomer Company are gratefully acknowledged. The authors also thank Mr. F. Biddlestone for his technical support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sani A. Samsudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samsudin, S.A., Kukureka, S.N. & Jenkins, M.J. The equilibrium melting temperature and isothermal crystallisation kinetics of cyclic poly(butylene terephthalate) and styrene maleimide (c-PBT/SMI) blends. J Therm Anal Calorim 114, 1307–1315 (2013). https://doi.org/10.1007/s10973-013-3111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3111-6

Keywords

Navigation