Skip to main content
Log in

Thermal properties of oxide glasses

Part V. Effect of added CoO and NiO oxides on the thermal stability of Li2O·2SiO2 glass system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A criterion based on the length of induction period of crystallization was used to study the effect of added CoO and NiO oxides on the thermal stability of Li2O·2SiO2 glass system against crystallization. It was found out that the thermal stability of studied glasses against crystallization is Li2O·2SiO2 < Li2O·2SiO2·0.1CoO < Li2O·2SiO2·0.1NiO. The addition of CoO and NiO oxides to Li2O·2SiO2 glass system increases its thermal stability. These results coincide with the order determined by stability criteria based on the characteristic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tricot G, Revel B, Wegner S. Thermal stability of a low Tg phosphate glass investigated by DSC, XRD and solid state NMR. J Noncryst Sol. 2011;357:2708–12.

    Article  CAS  Google Scholar 

  2. Jin T, Lu K. Thermal stability of a new solid oxide fuel/electrolyzer cell seal glass. J Power Sour. 2010;68:195–203.

    Article  Google Scholar 

  3. Bih L, Nadiri A, Aride J. Thermal study of A2O–(MoO3)2–P2O5 (A=Li, Na) glasses. J Therm Anal Calorim. 2002;68:965–72.

    Article  CAS  Google Scholar 

  4. Šimon P, Nemčeková K, Jóna E, Plško A, Ondrušová D. Thermal stability of glass evaluated by the induction period of crystallization. Thermochim Acta. 2005;428:11–4.

    Article  Google Scholar 

  5. Bansal NP, Doremus RH. Determination of reaction kinetic parameters from variable temperature DSC or DTA. J Therm Anal Calorim. 1984;29:115–9.

    Article  CAS  Google Scholar 

  6. Branda F, Marotta A, Buri A. Evaluation of glass stability from non-isothermal kinetic data. J Noncryst Sol. 1991;134:123–8.

    Article  CAS  Google Scholar 

  7. Novaes de Oliveira AP, Alarcon OE, Manfredini T, Pellacani GC, Siligardi C. Crystallization kinetics of a 2,3 Li2O·1,1 ZrO2·6SiO2 glass. Phys Chem Glass. 2000;41:100–3.

    Google Scholar 

  8. Cheng K. A criterion for evaluating the thermal stability of glasses. J Therm Anal Cal. 1999;103:8272–6.

    CAS  Google Scholar 

  9. Jóna E, Nemčeková K, Plško A, Ondrušová D, Šimon P. Thermal properties of oxide glasses. Part I. Verification of various criteria of thermal stability vs. crystallization. J Therm Anal Cal. 2004;76:85–90.

    Article  Google Scholar 

  10. Jóna E, Šimon P, Nemčeková K, Pavlík V, Rudinská G, Rudinská E. Thermal properties of oxide glasses part II. Activation energy as a criterion of thermal stability of Li2O·2SiO2·nTiO2 glass systems against crystallization. J Therm Anal Cal. 2006;84:673–7.

    Article  Google Scholar 

  11. Lendvayová S, Moricová K, Jóna E, Kraxner J, Loduhová M, Pavlík V, Pagáčová J, Mojumdar SC. Thermal properties of oxide glasses part IV. Induction period of crystallization as a criterion of thermal stability of M2O·SiO2 (M=Li, Na) glass systems against crystallization. J Therm Amal Calorim. 2012;108:901–4.

    Article  Google Scholar 

  12. Matusita K, Tashiro M. Effect of added oxides on the crystallization of Li2O·2SiO2 glasses. Phys Chem Glass. 1973;14:77–80.

    CAS  Google Scholar 

  13. Chowdhury B, John ME. Thermal evaluation of bio-engineered cotton. Thermochim Acta. 1998;313:43–53.

    Article  CAS  Google Scholar 

  14. Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Thermoanalytical techniques and their applications from medicine to construction part I. J Therm Anal Calorim. 2007;90:653–62.

    Article  CAS  Google Scholar 

  15. Tian F, Sun L, Mojumdar SC, Venart JES, Prasad RC. Absolute measurement of thermal conductivity of poly (acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2011;104:823–9.

    Article  CAS  Google Scholar 

  16. Chowdhury B, Mojumdar SC. Aspects of thermal conductivity relative to heat flow technique. J Therm Anal Calorim. 2005;81:179–82.

    Article  CAS  Google Scholar 

  17. Tian F, Sun L, Venart JES, Prasad RC, Mojumdar SC. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids. J Therm Anal Calorim. 2008;94:37–43.

    Article  CAS  Google Scholar 

  18. Mojumdar SC, Raki L, Mathis N, Schimdt K, Lang S. Synthesis, thermal conductivity, TG/DTA, AFM, FTIR, 29Si and 13C NMR studies of calcium silicate hydrate—polymer nanocomposite materials. J Therm Anal Calorim. 2006;85:119–24.

    Article  CAS  Google Scholar 

  19. Chowdhury B, Orehotsky J. Scope of electron transport studies by thermally stimulated discharge current measurement. J Therm Anal Calorim. 2003;73:53–7.

    Article  CAS  Google Scholar 

  20. Mojumdar SC, Raki L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate-poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.

    Article  CAS  Google Scholar 

  21. Liza’k P, Legerska J, Militky’ J, Mojumdar SC. Thermal transport characteristics of polypropylene fiber-based knitted fabrics. J Therm Anal Calorim. 2012;108:837–41.

    Article  Google Scholar 

  22. Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis TG, SDC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4—a precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86:605–8.

    Article  CAS  Google Scholar 

  23. Mojumdar SC, Varshney KG, Agrawal A. Hybrid fibrous ion exchange materials: past, present and future. Res J Chem Environ. 2006;10:89–103.

    CAS  Google Scholar 

  24. Doval M, Palou M, Mojumdar SC. Hydration behaviour of C2S and C2AS nanomaterials, synthesized by sol–gel method. J Therm Anal Calorim. 2006;86:595–9.

    Article  CAS  Google Scholar 

  25. Mojumdar SC, Moresoli C, Simon LC, Legge RL. Edible wheat gluten (WG) protein films: preparation thermal, mechanical and spectral properties. J Therm Anal Calorim. 2011;104:929–36.

    Article  CAS  Google Scholar 

  26. Varshney G, Agrawal A, Mojumdar SC. Pyridine based cerium(IV) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2007;90:731–4.

    Article  CAS  Google Scholar 

  27. Mojumdar SC, Melnik M, Jona E. Thermal and spectral properties of Mg(II) and Cu(II) complexes with heterocyclic N-donor ligands. J Anal Appl Pyrolysis. 2000;53:149–60.

    Article  CAS  Google Scholar 

  28. Mošner P, Vosejpková K, Koudelka L, Beneš L. Thermal studies of ZnO–B2O3–P2O5–TeO2 glasses. J Therm Anal Calorim. 2012;107:1129–35.

    Article  Google Scholar 

  29. Mojumdar SC. Processing-moisture resistance and thermal analysis of MDF materials. J Therm Anal Calorim. 2001;64:1133–9.

    Article  CAS  Google Scholar 

  30. Rejitha KS, Mathew S. Investigations on the thermal behavior of hexaamminenickel(II) sulphate using TG-MS and TR-XRD. Glob J Anal Chem. 2010;1(1):100–8.

    CAS  Google Scholar 

  31. Pajtášová M, Ondrušová D, Jóna E, Mojumdar SC, Ľalíková S, Bazyláková T, Gregor M. Spectral and thermal characteristics of copper(II) carboxylates with fatty acid chains and their benzothiazole adducts. J Therm Anal Calorim. 2010;100:769–77.

    Article  Google Scholar 

  32. Mojumdar SC. Thermoanalytical and IR spectroscopy investigation of Mg(II) complexes with heterocyclic ligands. J Therm Anal Calorim. 2001;64:629–36.

    Article  CAS  Google Scholar 

  33. Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis and characterisation of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim. 2011;104:869–73.

    Article  CAS  Google Scholar 

  34. Raileanu M, Todan L, Crisan M, Braileanu A, Rusu A, Bradu C, Carpov A, Zaharescu M. Sol–gel materials with pesticide delivery properties. J Environ Protect. 2010;1:302–13.

    Article  CAS  Google Scholar 

  35. Liza’k P, Mura’rova’ A, Mojumdar SC. Heat transfer through a textile layer composed of hollow fibres. J Therm Anal Calorim. 2012;108:851–7.

    Article  Google Scholar 

  36. Mojumdar SC, Šimon P, Krutošíková A. [1]Benzofuro[3,2-c]pyridine: synthesis and coordination reactions. J Therm Anal Calorim. 2009;96:103–9.

    Article  CAS  Google Scholar 

  37. Moricová K, Jóna E, Plško A, Mojumdar SC. Thermal stability of Li2O–SiO2–TiO2 gels evaluated by the induction period of crystallization. J Therm Anal Calorim. 2010;100:817–20.

    Article  Google Scholar 

  38. Mojumdar SC, Miklovic J, Krutosikova A, Valigura D, Stewart JM. Furopyridines and furopyridine-Ni(II) complexes—synthesis, thermal and spectral characterization. J Therm Anal Calorim. 2005;81:211–5.

    Article  CAS  Google Scholar 

  39. Vasudevan G, AnbuSrinivasan P, Madhurambal G, Mojumdar SC. Thermal analysis, effect of dopants, spectral characterisation and growth aspects of KAP crystals. J Therm Anal Calorim. 2009;96:99–102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lendvayová, S., Moricová, K., Jóna, E. et al. Thermal properties of oxide glasses. J Therm Anal Calorim 112, 1133–1136 (2013). https://doi.org/10.1007/s10973-013-3105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3105-4

Keywords

Navigation