Skip to main content
Log in

Natural specimen of triple solid solution ettringite–thaumasite–chromate-ettringite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three natural minerals of ettringite group were investigated by TG to refine their chemical composition. Two samples are ettringite Ca5.97Mg0.01Sr0.02Al1.99Cr0.01(SO4)3(OH)12·23.7H2O and bentorite Ca5.99Mg0.01Cr1.95Al0.01Si0.03(SO4)2.82·(CO3)0.20(OH)12·19.4H2O, but the third one Ca5.99Na0.01Al1.38Si0.62(SO4)2.49·(CrO4)0.36·(CO3)0.46(OH)12·15.8H2O has found to be a solid solution among ettringite, thaumasite, and chromate-ettringite, not registered yet as a new mineral species. Similar phase is well known in concrete formed with Cr6+ admixture, but is found for the first time as a natural compound. X-ray single-crystal investigation allowed us to refine the structure and support substitution (SO4)2− ↔ (CrO4)2− in natural minerals of ettringite group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford; 1997.

    Book  Google Scholar 

  2. Klemm WA. Ettringite and oxyanion-substituted ettringites—their characterization and application in the fixation of heavy metals: a synthesis of the literature, Research and Development Bulletin RD116, Portland Cement Association; 1998.

  3. Klemm WA, Bhatty JI. Fixation of heavy metals as oxyanion-substituted ettringites. R&D Serial No. 2431a. Skokie: Portland Cement Association; 2002.

  4. Park JY, Kang WH, Hwang I. Hexavalent chromium uptake and release in cement pastes. Environ Eng Sci. 2006;23:133–40.

    Article  CAS  Google Scholar 

  5. Chrysochoou M, Dermatas D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study. J Hazard Mater. 2006;136:20–33.

    Article  CAS  Google Scholar 

  6. Leisinger SM, Lothenbach B, Le Saout G, Kägi R, Wehrli B, Annette Johnson C. Solid solutions between CrO4- and SO4-ettringite Ca6(Al(OH)6)2[(CrO4) x (SO4)1−x ]3·26H2O. Environ Sci Technol. 2010;44:8983–8.

    Article  CAS  Google Scholar 

  7. Moore A, Taylor HFW. Crystal structure of ettringite. Nature. 1968;218:1048–9.

    Article  CAS  Google Scholar 

  8. Moore A, Taylor HFW. Crystal structure of ettringite. Acta Cryst B. 1970;26:386–93.

    Article  CAS  Google Scholar 

  9. Welin E. The crystal structure of thaumasite Ca3H2(CO3/SO4)·13H2O. Ark Min Geol. 1956;2:137–47.

    CAS  Google Scholar 

  10. Gatta GD, McIntyre GJ, Swanson JG, Jacobsen SD. Minerals in cement chemistry: a single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. Am Miner. 2012;97:1060–9.

    Article  CAS  Google Scholar 

  11. Antao SM, Duane MJ, Hassan I. DTA, TG, and XRD studies of sturmanite and ettringite. Can Miner. 2002;40:1403–9.

    Article  CAS  Google Scholar 

  12. Constantiner D, Farrington SA. Review of the thermodynamic stability of ettringite. Cem Concr Aggreg. 1999;21:39–42.

    CAS  Google Scholar 

  13. Rothstein D, Thomas JJ, Christensen BJ, Jennings HA. Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cem Concr Res. 2002;32:1663–71.

    Article  CAS  Google Scholar 

  14. Macphee DE, Barnett SJ. Solution properties of solids in the ettringite–thaumasite solid solution series. Cem Concr Res. 2004;34:1591–8.

    Article  CAS  Google Scholar 

  15. Lothenbach B, Gruskovnjak A. Hydration of alkali-activated slag: thermodynamic modelling. Adv Cem Res. 2007;19:81–92.

    Article  CAS  Google Scholar 

  16. Flatt RJ, Scherer GW. Thermodynamics of crystallization stresses in DEF. Cem Concr Res. 2008;38:325–36.

    Article  CAS  Google Scholar 

  17. Sokol EV, Gaskova OL, Kokh SN, Kozmenko OA, Seryotkin YV, Vapnik Y, Murashko MN. Chromatite and its Cr3+- and Cr6+-bearing precursor minerals from the Nabi Musa mottled zone complex, Judean Desert. Am Miner. 2011;96:659–74.

    Article  CAS  Google Scholar 

  18. Drebushchak VA, Mylnikova LN, Molodin VI. Thermogravimetric investigation of ancient ceramics. Metrological analysis of sampling. J Therm Anal Calorim. 2007;90:73–9.

    Article  CAS  Google Scholar 

  19. Oxford Diffraction Oxford Diffraction Ltd. Xcalibur CCD system. Abingdon: CrysAlis Software system; 2008.

    Google Scholar 

  20. Oxford Diffraction. CrysAlisRED. Abingdon: Oxford Diffraction Ltd; 2008.

    Google Scholar 

  21. Bannister FA, Hey MH, Bernal JD. Ettringite from Scawt Hill Co., Antrim. Miner Mag. 1936;24:324–9.

    Article  CAS  Google Scholar 

  22. Nocuń-Wczelik W, Stok A, Konik Z. Heat evolution in hydrating expansive cement systems. J Therm Anal Calorim. 2010;101:527–32.

    Article  Google Scholar 

  23. Dweck J, Ferreira da Silva PF, Büchler PM, Cartledge FK. Study by thermogravimetry of the evolution of ettringite phase during type II Portland cement hydration. J Therm Anal Calorim. 2002;69:179–86.

    Article  CAS  Google Scholar 

  24. Cardarelli F. Materials handbook: a concise desktop reference. London: Springer; 2008.

    Google Scholar 

  25. Winnefeld F, Barlag S. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite. J Therm Anal Calorim. 2010;101:949–57.

    Article  CAS  Google Scholar 

  26. Smolczyk HG. The ettringite phase in blast furnace cement. Zement Kalk Gips. 1961;14:277–84.

    CAS  Google Scholar 

  27. Siler P, Kratky J, De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J Therm Anal Calorim. 2012;107:313–20.

    Article  CAS  Google Scholar 

  28. Rahhal VF, Irassar EF, Trezza MA, Bonavetti VL. Calorimetric characterization of Portland limestone cement produced by intergrinding. J Therm Anal Calorim. 2012;109:153–61.

    Article  CAS  Google Scholar 

  29. Pöllman H. Syntheses, properties and solid solution of ternary lamellar calcium aluminate hydroxi salts (AFm-phases) containing SO4 2−, CO3 2− and OH. N Jb Miner Abh. 2006;182:173–81.

    Article  Google Scholar 

  30. Opravil T, Ptáček P, Šoukal F, Havlica J, Brandštetr J. The synthesis and characterization of an expansive admixture for M-type cements I. The influence of free CaO to the formation of ettringite. J Therm Anal Calorim. 2013;111:517–26.

    Google Scholar 

  31. Pacewska B, Wilińska I, Nowacka M. Studies on the influence of different fly ashes and Portland cement on early hydration of calcium aluminate cement. J Therm Anal Calorim. 2012;107:859–68.

    Google Scholar 

  32. Neves A, Toledo Filho RD, Fairbairn EMR, Dweck J. Early stages hydration of high initial strength Portland cement. Part I. Thermogravimetric analysis on calcined mass basis. J Therm Anal Calorim. 2012;108:725–31.

    Google Scholar 

  33. Tobón JI, Paya J, Borrachero MV, Soriano L, Restrepo OJ. Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J Therm Anal Calorim. 2012;107:233–9.

    Article  Google Scholar 

  34. Barnett SJ, Adam CD, Jackson ARW. Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12·26H2O, and thaumasite, Ca3SiSO4CO3(OH)6·12H2O. J Mater Sci. 2000;35:4109–14.

    Article  CAS  Google Scholar 

  35. Bensted J, Prakash Varma S. Studies of ettringite and its derivatives. Part 2. Chromate substitution. Silicon Ind. 1972;37:315–8.

    CAS  Google Scholar 

  36. Kumarathasan P, McCarthy GJ, Hassett DJ, Pflughoeft-Hassett DF. Oxyanion substituted ettringites: synthesis and characterization; and their potential role in immobilization of As, B, Cr, Se and V. MRS Proc. 1989;178:83–104.

    Article  Google Scholar 

  37. Poellmann H, Auer S, Kuzel H-J, Wenda R. Solid solution of ettringites. Part II. Incorporation of B(OH) 4 and CrO4 2− in Ca6Al2O6(SO4)3·32H2O. Cem Concr Res. 1993;23:422–30.

    Article  CAS  Google Scholar 

  38. Perkins RB, Palmer CD. Solubility of Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of ettringite at 5–75°C. Appl Geochem. 2000;15:1203–18.

    Article  CAS  Google Scholar 

  39. Palou M, Majling J. Hydraulic activity of C4A3Cr in presence of C4A3 \( {\bar{\text{S}}} \). J Therm Anal Calorim. 2003;71:367–73.

    Google Scholar 

  40. Sheldrick G. A short history of SHELX. Acta Cryst A. 2008;64:112–22.

    Article  CAS  Google Scholar 

  41. Hartman MR, Berliner R. Investigation of the structure of ettringite by time-of-flight neutron powder diffraction techniques. Cem Concr Res. 2006;36:364–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. V.V. Sharygin for cooperation and helpful advice (Sobolev Institute of Geology and Mineralogy (IGM), Novosibirsk), Drs. M.N. Murashko (Systematic Mineralogy Company, St. Petersburg), V.V. Sharygin, and Ye. Vapnik (Ben-Gurion University of the Negev, Beer-Sheva) donating samples of ettringite- and bentorite-bearing natural rocks from the Hatrurim basin and Maale Adummim localities, Israel. Thanks are extended to Drs. N.S. Karmanov, E.N. Nigmatulina, and M.V. Khlestov (IGM, Novosibirsk) who performed the analytical work. The work was supported by a grant from RFBR (12-05-00057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V.A., Seryotkin, Y.V., Kokh, S.N. et al. Natural specimen of triple solid solution ettringite–thaumasite–chromate-ettringite. J Therm Anal Calorim 114, 777–783 (2013). https://doi.org/10.1007/s10973-013-2989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-2989-3

Keywords

Navigation