Skip to main content

Advertisement

Log in

Structure and dielectric properties of Dy-BST/PVDF nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper uses Dysprosium doped Barium Strontium Titanate (Dy-BST) ceramic nanoparticles prepared via a solid-state process as dielectric fillers in polyvinylidene fluoride (PVDF) based nanocomposites. Dy-BST/PVDF nanocomposites were synthesized by casting method. A high-resolution transmission electron microscope validates that the size of Dy-BST nanoparticles is in the range of 10 to 30 nm with a polycrystalline structure. The impact of the Dy-BST nanoparticle contents (0–25 vol%) on the microstructure, dielectric, and breakdown strength properties of Dy-BST/PVDF nanocomposites were examined. The XRD of the Dy-BST/PVDF nanocomposite films confirms the cubic phase of the Dy-BST and both α-phase and β-phase of pure PVDF films. The measured permittivity showed a very clear dispersion step accompanied by dynamic peak relaxation at higher frequencies and/or lower temperature originating from the terminal γ-relaxation. As the temperature increases, real and imaginary parts of complex permittivity increase linearly with decreasing frequency, indicating the conductivity contribution. The breakdown (BD) voltage and permittivity were used in the COMSOL Multiphysics-based finite element method to get the breakdown field strength and calculate the corresponding energy density. The energy density showed a maximum value of about three times higher than that of pure PVDF. Therefore, the proposed nanocomposites with Dy-BST nanoparticles as fillers are promising for high energy density applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Xiong, D. Shen, Q. Zhang, H. Yang, J. Wen, Z. Zhou, Achieving high discharged energy density in PVDF-based nanocomposites loaded with fine Ba0.6Sr0.4TiO3 nanofibers. Compos. Commun. 25, 100682 (2021)

    Article  Google Scholar 

  2. Y. Wang, J. Chen, Y. Li, Y. Niu, Q. Wang, H. Wang, Multilayered hierarchical polymer composites for high energy density capacitors. J. Mater. Chem. 7(7), 2965–2980 (2019)

    Article  CAS  Google Scholar 

  3. Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45(1), 433–458 (2015)

    Article  CAS  Google Scholar 

  4. T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, R. Ramprasad, Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236–269 (2016)

    Article  CAS  Google Scholar 

  5. L. Zhang, Z. Liu, X. Lu, G. Yang, X. Zhang, Z.Y. Cheng, Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy 26, 550–557 (2016)

    Article  CAS  Google Scholar 

  6. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)

    Article  CAS  Google Scholar 

  7. P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, Q. Wang, Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun. 4, 2845 (2013)

    Article  Google Scholar 

  8. D.A. Mansour, N.M.K. Abdel-Gawad, A.Z. El Dein, H.M. Ahmed, M.M.F. Darwish, M. Lehtonen, Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials 14(1), 66 (2020)

    Article  Google Scholar 

  9. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  10. V.K. Prateek, R. Bhunia, A. Garg, R.K. Gupta, Poly(vinylpyrrolidone)/Poly (vinylidene fluoride) as guest/host polymer blends: understanding the role of compositional transformation on nanoscale dielectric behavior through a simple solution–process route. ACS Appl. Energy Mater. 2, 6146–6152 (2019)

    Article  CAS  Google Scholar 

  11. Q. Li, Q. Wang, Ferroelectric polymers and their energy-related applications. Macromol. Chem. Phys. 217, 1228–1244 (2016)

    Article  CAS  Google Scholar 

  12. M.A. Marwat, B. Xie, Y. Zhu, P. Fan, W. Ma, H. Liu, M. Ashtar, J. Xiao, D. Salamon, C. Samart, largely enhanced discharge energy density in linear polymer nanocomposites by designing a sandwich structure. Composites Part A 121, 115–122 (2019)

    Article  CAS  Google Scholar 

  13. B. Xie, Q. Zhang, L. Zhang, Y. Zhu, X. Guo, P. Fan, H. Zhang, Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy 54, 437–446 (2018)

    Article  CAS  Google Scholar 

  14. H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K.C. Zhou, D. Zhang, C.R. Bowen, C.Y. Wan, Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48, 4424–4465 (2019)

    Article  CAS  Google Scholar 

  15. Ru. Guo, H. Luo, M. Yan, X. Zhou, K. Zhou, D. Zhang, significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 79, 105412 (2021)

    Article  CAS  Google Scholar 

  16. X. Lu, X. Zou, J. Shen, L. Zhang, L. Jin, Z.Y. Cheng, High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 70, 104551 (2020)

    Article  CAS  Google Scholar 

  17. D. Zhang, Z. Wu, X.F. Zhou, A.Q. Wei, C. Chen, H. Luo, High energy density in P (VDF-HFP) nanocomposite with paraffin engineered BaTiO3 nanoparticles. Sens. Actuators A 260, 228–235 (2017)

    Article  CAS  Google Scholar 

  18. R. Guo, J. Roscow, C.R. Bowen, H. Luo, Y. Huang, Y. Ma, K. Zhou, D. Zhang, significantly enhanced permittivity and energy density in dielectric composites with aligned BaTiO3 lamellar structures. J. Mater. Chem. A 8, 3135–3144 (2020)

    Article  CAS  Google Scholar 

  19. K. Liu, M.A. Marwat, W. Ma, T. Wei, M. Li, P. Fan, D. Lu, Y. Tian, C. Samart, B. Ye, J. He, H. Zhang, Enhanced energy storage performance of nanocomposites filled with paraelectric ceramic nanoparticles by weakening the electric field distortion. Ceram. Int. 46, 21149–21155 (2020)

    Article  CAS  Google Scholar 

  20. Y. Zhang, X. Liu, J. Yu, M. Fan, X. Ji, B. Sun, P. Hu, Optimizing the dielectric energy storage performance in P(VDF-HFP) nanocomposite by modulating the diameter of PZT nanofibers prepared via electrospinning. Compos. Sci. Technol. 184, 107838 (2019)

    Article  CAS  Google Scholar 

  21. A.K. Zak, W.C. Gan, W.H.A. Majid, M. Darroudi, T.S. Velayutham, Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceram. Int. 37(5), 1653–1660 (2011)

    Article  CAS  Google Scholar 

  22. S. Liu, S. Xue, S. Xiu, B. Shen, J. Zhai, Surface-modified Ba (Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016)

    Article  CAS  Google Scholar 

  23. Q. Chen, R. Hong, G. Wang, Preparation and characterization of composites from Ba0.5Sr0.5TiO3 and polystyrene. J Alloy Compds. 609, 274–83 (2014)

    Article  CAS  Google Scholar 

  24. L. Zhang, P. Wu, Y. Li, Z. Cheng, J.C. Brewer, Preparation process and dielectric properties of Ba0.5Sr0.5TiO3-P(VDF-CTFE) nanocomposites. Composites Part B 56, 284–9 (2014)

    Article  CAS  Google Scholar 

  25. Q.M. Sun, Q.L. Gu, K.J. Zhu, R.Y. Jin, J.S. Liu, J. Wang et al., Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci Rep. 7, 42274 (2017)

    Article  CAS  Google Scholar 

  26. K.P. Andryushin, L.A. Shilkina, S.V. Khasbulatov, A.V. Nagaenko, S.I. Dudkina, I.N. Andryushina, K.A. Sadykov, I.A. Verbenko, A.G. Rudskaya, L.A. Reznichenko, The effects of the modification of the BST-system solid solutions with rare earth elements. Ceram. Int. 48, 1642–1658 (2022)

    Article  CAS  Google Scholar 

  27. J. Zhang, J. Zhai, X. Chou, X. Yao, Influence of rare-earth addition on microstructure and dielectric behavior of Ba0.6Sr0.4TiO3 ceramics. Mater. Chem. Phys. 111, 409–413 (2008)

    Article  CAS  Google Scholar 

  28. J. Chen, Y. Wang, X. Xu, Q. Yuan, Y. Niu, Q. Wang, H. Wang, Ultrahigh discharge efficiency and energy density achieved at low electric fields in sandwich-structured polymer films containing dielectric elastomers. J. Mater. Chem. A 7, 3729–3736 (2019)

    Article  CAS  Google Scholar 

  29. Z. Pan, B. Liu, J. Zhai, L. Yao, K. Yang, B. Shen, NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites. Nano Energy 40, 587–595 (2017)

    Article  CAS  Google Scholar 

  30. Y. Wang, Y. Li, L. Wang, Q. Yuan, J. Chen, Y. Niu, X. Xu, Q. Wang, H. Wang, Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Mater. 24, 626–634 (2020)

    Article  Google Scholar 

  31. M. Rabuffi, G. Picci, Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939–1942 (2002)

    Article  CAS  Google Scholar 

  32. C. Chao, D. Yu, J. Cao, G. Wang, L. Feng, A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55, 116–125 (2013)

    Article  Google Scholar 

  33. C.V. Chanmal, J.P. Jog, Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polym. Lett. 2, 294–301 (2008)

    Article  CAS  Google Scholar 

  34. Y. Feng, W. Li, Y. Hou, Y. Yu, W. Cao, T. Zhang, W. Fei, Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 3, 1250–1260 (2015)

    Article  CAS  Google Scholar 

  35. X. Lu, L. Zhang, Y. Tong, Z. Cheng, BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Composites Part B 168, 34–43 (2019)

    Article  CAS  Google Scholar 

  36. L. Zhang, X. Shan, P. Wu, Z. Cheng, Dielectric characteristics of CaCu3Ti4O12/P (VDF-TrFE) nanocomposites. Appl. Phys. A 107, 597–602 (2012)

    Article  CAS  Google Scholar 

  37. L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators. Nano Energy 78, 105251 (2020)

    Article  CAS  Google Scholar 

  38. M. Sharma, A. Gaur, J.K. Quamara, Temperature-dependent dielectric response of (1–x) PVDF/(x)BaTiO3 nanocomposite films. Phys. B 563, 23–29 (2019)

    Article  CAS  Google Scholar 

  39. Y. Li, J. Wang, W. Tong, S. Zhang, Z. Wang, Q. An, Y. Zhang, Enhanced dielectric properties of halloysite/PVDF-HFP modified by Li-ion realizing superior energy conversion ability. Chem. Phys. Lett. 761, 138089 (2020)

    Article  CAS  Google Scholar 

  40. M. Sharma, V. Srinivas, G. Madras, S. Bose, Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy. RSC Adv. 6(8), 6251–6258 (2016)

    Article  CAS  Google Scholar 

  41. S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, H. Yoneda, Advanced capacitors and their application. J. Power Sources 97–98, 807–811 (2001)

    Article  Google Scholar 

  42. Precision Acoustics Ltd, Guide to using poled PVDF, Piezo Electric Materials Technical Note (2008)

  43. F. Kremer, A. Schönhals, Broadband dielectric measurement techniques, in Broadband Dielectric Spectroscopy. ed. by F. Kremer, A. Schönhals (Springer, Berlin, 2002)

    Google Scholar 

  44. M. Mahdy, I. El-Zaway, G. Turky, Lead telluride nano-crystalline thin films: a broadband dielectric spectroscopy study. Curr. Appl. Phys. 19, 787–793 (2019)

    Article  Google Scholar 

  45. A.S. Abouhaswa, Y.S. Rammah, G.M. Turky, Characterization of zinc lead-borate glasses doped with Fe3+: optical, dielectric and ac-conductivity investigations. J. Mater. Sci. 31, 17044–17054 (2020)

    CAS  Google Scholar 

  46. F.H. Margha, G.T. El-Bassyouni, G.M. Turky, Enhancing the electrical conductivity of vanadate glass system (Fe2O3, B2O3, V2O5) via doping with sodium or strontium cations. Ceram. Int. 45, 11838–11843 (2019)

    Article  CAS  Google Scholar 

  47. T.A. Taha, M.H. Mahmoud, Synthesis and characterization of PVDF-Er2O3 polymer nanocomposites for energy storage applications. Mater. Chem. Phys. 270, 124827 (2021)

    Article  CAS  Google Scholar 

  48. R. Goyal, S. Katkade, D. Mule, Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Composites Part B 44, 128–132 (2013)

    Article  CAS  Google Scholar 

  49. W. Mei, J. Wei, Z.Y. Ko, Z.-Y. Cheng, J. Hu, Novel P(VDF-HFP)/BST nanocomposite films with enhanced dielectric properties and optimized energy storage performance. Ceram. Int. 47, 15561–15567 (2021)

    Article  CAS  Google Scholar 

  50. E. Ozkazanc, H.Y. Guney, T. Oskay, E. Tarcan, The effect of uniaxial orientation on the dielectric relaxation behavior of α-PVDF. J. Appl. Polym. Sci. 109, 3878 (2008)

    Article  CAS  Google Scholar 

  51. J.A. Puertolas et al., Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 152, 263 (2017)

    Article  CAS  Google Scholar 

  52. H.K. Shin, Dielectric relaxation in polyvinylidene fluoride (PVDF)/CsHSO4 composites. J. Korean Phys. Soc. 76(1), 49–54 (2020)

    Article  CAS  Google Scholar 

  53. E. Tuncer, M. Wegener, R. Gerhard-Multhaupt, Distribution of relaxation times in α phase polyvinylidene fluoride. J. Non-Cryst. Solids 351, 2917 (2005)

    Article  CAS  Google Scholar 

  54. G.T. El-Bassyouni, G.M. Turky, S.H. Kenawy, A.A. Abd El-Aty, E.M.A. Hamzawy, Effect of yttrium oxide in hydroxyapatite biocomposite materials: phase, electrical and antimicrobial evaluation. ECS J. Solid State Sci. Technol. 10, 123014 (2021)

    Article  CAS  Google Scholar 

  55. N. Papathanassiou, O. Mykhailiv, L. Echegoyen, I. Sakellis, M.E. Plonska-Brzezinska, Electric properties of carbon nanoonion/polyaniline composites: a combined electric modulus and ac conductivity study. J. Phys. D 49, 285305 (2016)

    Article  Google Scholar 

  56. G.M. Turky, A.M. Fayad, G.T. El-Bassyouni, M. Abdel-Baki, Dielectric and electrical properties of MoO3 doped borophosphate glass dielectric spectroscopy investigations. J. Mater. Sci. 32, 22417 (2021)

    CAS  Google Scholar 

  57. E. Kolonelou, A.N. Papathanassiou, E. Sakellis, (Evidence oflocal softening in glassy poly (vinyl alcohol)/poly (vinyl pyrrolidone) (1/1, w/w) nano-graphene platelets composites. Mater. Chem. Phys. 223, 140 (2019)

    Article  CAS  Google Scholar 

  58. N.M.K. Abdel-Gawad, A.Z. El Dein, D.A. Mansour, H.M. Ahmed, M.M.F. Darwish, M. Lehtonen, PVC nanocomposites for cable insulation with enhanced dielectric properties partial discharge resistance and mechanical performance. High Voltage 5(4), 463–471 (2020)

    Article  Google Scholar 

  59. N.M.K. Abdel-Gawad, A.Z. El Dein, D.E.A. Mansour, H.M. Ahmed, M.M.F. Darwish, M. Lehtonen, Multiple enhancement of PVC cable insulation using functionalized SiO2nanoparticles based nanocomposites. Electr. Power Syst. Res. 163, 612–625 (2018)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HMA, GME-K, and D-EAM performed all the experimental work (sample preparation and its characterization) and prepared manuscript. GMT performed the dielectric measurements and its discussion. ASA helped significantly in the explanation of experimental results.

Corresponding author

Correspondence to A. S. Abouhaswa.

Ethics declarations

Conflict of interest

There is no conflict of interest among the contributing authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abomostafa, H.M., Abouhaswa, A.S., El-Komy, G.M. et al. Structure and dielectric properties of Dy-BST/PVDF nanocomposites. J Mater Sci: Mater Electron 34, 836 (2023). https://doi.org/10.1007/s10854-023-10253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10253-9

Navigation