Skip to main content
Log in

Constructing a self-consistent integral baseline by using cubic splines

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Various types of transformations require different baselines reflecting specificities of these transitions. The present work deals with the case when a degree of transformation is directly proportional to heat consumed or released. For such case, a baseline is named an integral baseline and is traditionally constructed by unnecessary simplifications. A new method is proposed as an alternative fast and robust computational method for baseline construction utilizing interpolating cubic splines. The method is self-consistent in the sense that it is free of needless assumptions and that it provides linearity between the degree of transformation and heat measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Dupuy E Leroy A Maazouz (2000) J. Appl. Polym. Sci. 78 2262 Occurrence Handle10.1002/1097-4628(20001220)78:13<2262::AID-APP40>3.0.CO;2-Y Occurrence Handle1:CAS:528:DC%2BD3cXnvVOmtbY%3D

    Article  CAS  Google Scholar 

  2. W Hemminger G Höhne et al. (1984) Calorimetry: Fundamentals and Practice Verlag Chemie Deerfield Beach 310

    Google Scholar 

  3. G van der Plaats (1984) Thermochim. Acta 72 77 Occurrence Handle10.1016/0040-6031(84)85057-1 Occurrence Handle1:CAS:528:DyaL2cXhtV2qurw%3D

    Article  CAS  Google Scholar 

  4. PE Gill W Murray MH Wrigh et al. (1981) Practical optimization Academic Press London, New York 401

    Google Scholar 

  5. WH Hildebrandt (1979) Metall. Trans. A 10A 1045 Occurrence Handle1:CAS:528:DyaE1MXlsl2lsLo%3D

    CAS  Google Scholar 

  6. F Haessner et al. (1992) Calorimetric Investigationo Recovery and Recrystallization in Metals, Thermal Analysis in Metallurgy TMS Warrendale 233

    Google Scholar 

  7. G Riontino GL Ferro D Lussana M Massazza (2005) J. Therm. Anal. Cal. 82 83 Occurrence Handle10.1007/s10973-005-0845-9 Occurrence Handle1:CAS:528:DC%2BD2MXht1KgsbbO

    Article  CAS  Google Scholar 

  8. WF Hemminger SM Sarge (1991) J. Thermal Anal. 37 1455 Occurrence Handle10.1007/BF01913481 Occurrence Handle1:CAS:528:DyaK38Xpt1Gqtg%3D%3D

    Article  CAS  Google Scholar 

  9. GWH Höhne W Hemminger HJ Flammersheim et al. (2003) Differential Scanning Calorimetry Springer Berlin, New York 298

    Google Scholar 

  10. S Wang K Tozaki H Hayashi H Inaba (2005) J. Therm. Anal. Cal. 79 605 Occurrence Handle10.1007/s10973-005-0585-x Occurrence Handle1:CAS:528:DC%2BD2MXisFynsLw%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Malakhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malakhov, D.V., Abou Khatwa, M.K. Constructing a self-consistent integral baseline by using cubic splines. J Therm Anal Calorim 87, 595–599 (2007). https://doi.org/10.1007/s10973-006-7702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7702-3

Keywords

Navigation