Skip to main content
Log in

Experimental analysis on nano scale flash powder composition in fireworks manufacturing

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The flash powder composition is used in the fireworks industry to manufacture the firecrackers which consist of potassium nitrate, aluminium and sulphur in 75 μm range. This study focuses on the synthesis of nano and micro flash powders with different trials of composition. The particle sizes of the nanochemicals are 142.8, 93.10 and 91.28 nm for KNO3, Al and S, respectively. The nano flash powder is mixed with micron flash powder in different ratios to manufacture the crackers and thus the noise level for the crackers are found. Thermal analysis was conducted in differential thermal and thermo gravimetric analyser. Also, impact sensitivity and friction sensitivity of the nano flash powder are analysed. The nano flash powder shows low ignition temperature compared to micron and also has high mechanical sensitivity. Fire crackers which contains one gram of 100 % nano flash powder emits the threshold noise level of 125 dB(AI) in spite of 4 g of 10 % nano flash powder for the same composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Firecrackers Shimizu T. The art, science and technique. 3rd ed. Tokyo: Pyrotechnica Publications, Maruzen Co; 1996.

    Google Scholar 

  2. Ghosh KN. The principles of firecrackers. 2nd ed. Chennai: Economic Enterprises; 1981.

    Google Scholar 

  3. Conkling J. Chemistry of pyrotechnics: basic principles and theory. New York: Taylor & Francis; 1985.

    Google Scholar 

  4. Sivaprakasam SP, Surianarayanan M, Nagaraj P, Venkataratnam GS. Impact sensitiveness analysis of pyrotechnic flash compositions. J Pyrotech. 2005;21:51–8.

    Google Scholar 

  5. Sivaprakasam SP, Surianarayanan M. Interrelation between impact, friction and thermal energy in a pyrotechnic flash reaction. J Pyrotech. 2006;23:51–6.

    Google Scholar 

  6. Jeyarajendran A, Thanulingam TL. Sound level analysis of firecrackers. J Pyrotech. 2008;27:60–76.

    Google Scholar 

  7. Thanulingam TL. Hazard assessment and effect of nano-sized oxidizer on sound level analysis of firecrackers. J Pyrotech. 2009;28:95–111.

    CAS  Google Scholar 

  8. Azhagurajan A, Selvakumar N, Thanulingam TL. Thermal and sensitivity analysis of nano aluminium powder for firework application. J Therm Anal Calorim. 2011;105(1):259–67.

    Article  CAS  Google Scholar 

  9. Azhagurajan A, Selvakumar N, Jeyakumar Sriram. Flame analysis of micro and nano flash powder for firework applications. J Pyrotech. 2011;30(2):11–21.

    CAS  Google Scholar 

  10. Azhagurajan A, Selvakumar N, Mohammed Yasin M. Minimum ignition energy for micro and nano flash powders. Process Saf Prog. 2012;31(1):19–23.

    Article  CAS  Google Scholar 

  11. Pandey M, Jha S, Kumar R, Mishra S, Jha R. The pressure effect study on the burning rate of ammonium nitrate-HTPB-based propellant with the influence catalysts. J Therm Anal Calorim. 2012;107(1):135–40.

    Article  CAS  Google Scholar 

  12. Iliyas A, Hawboldt K, Khan F. Kinetics and safety analysis of sulfide mineral self-heating part 1. Kinetics and safety analysis of sulfide mineral self-heating part 1. Therm Anal Calorim. 2011;106(1):53–61.

    Article  CAS  Google Scholar 

  13. Trache D, Khimeche K, Benziane M Dahmani A. Solid–liquid phase equilibria for binary mixtures of propellant’s stabilizers. J Therm Anal Calorm (2012). Online 2 July 2012.

  14. Veedhi S, Sawant A. Designing a safer process for the reaction of TFA with sodium borohydride in THF by calorimetric technique. J Therm Anal Calorm (2012). Online 2 July 2012.

  15. Sorescu M, Tianhong X. Particle size effects on the thermal behavior of hematite. J Therm Anal Calorim. 2012;107(2):463–9.

    Article  CAS  Google Scholar 

  16. da Cunha ALC, Lemos MS, Meth S, Gonçalves JP, Dweck J. A study of the particle size effect on the pozzolanic activity of an equilibrium catalyst. J Therm Anal Calorm. 2011;106(3):805–9.

    Article  CAS  Google Scholar 

  17. Wu H-C, Chang R-C, Hsiao H-C. Research in minimum ignition energy for nano Titanium powder and nano iron powder. J Loss Prev Process Ind. 2009;22(1):21–4.

    Article  CAS  Google Scholar 

  18. Zhao QQ, Boxman A, Chowdhry U. Nanotechnology in the chemical industry—opportunities and challenges. J Nanopart Res. 2003;5:567–72.

    Article  Google Scholar 

  19. Sarawadekar RG, Agrawal JP. Nanomaterials in pyrotechnics. Defence Sci J. 2008;58(4):486–95.

    CAS  Google Scholar 

  20. Bingyou J, Baiquan L, Shulei S, Chuanjie Z, Wenxia L. Explosive characteristics of nanometer and micrometer aluminum-powder.Min. Sci. Tech (China). 2011;21:661–6.

    Article  Google Scholar 

  21. Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem Soc. 2011. doi:10.1016/j.jscs.2011.05.009.

  22. Pivkina A, Streletskii A, Kolbanev I, Ul’yanova P, Frolov YU, Butyagin P. Mechanochemically activated nano-aluminium: oxidation behaviour. J Mater Sci. 2004;39:5451–3.

    Article  CAS  Google Scholar 

  23. Pivkina A, Ivanov D, Yu F, Mudretsova S, Nickolskaya A, Schoonma J. Plasma synthesized nano-aluminum powders Structure, thermal properties and combustion behaviour. J Therm Anal Calorim. 2006;86(3):733–8.

    Article  CAS  Google Scholar 

  24. Granier JJ, Plantier KB, Pantoya ML. The role of the Al2O3 passivation shell surrounding nano-Al particles in the combustion synthesis of NiAl. J Mater Sci. 2004;39:6421–31.

    Article  CAS  Google Scholar 

  25. Wharton R, Harding J. An experimental comparison of three documented methods for the evaluation of friction sensitiveness. J Energ Mater. 1993;11:51–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azhagurajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvakumar, N., Azhagurajan, A. & Suresh, A. Experimental analysis on nano scale flash powder composition in fireworks manufacturing. J Therm Anal Calorim 113, 615–621 (2013). https://doi.org/10.1007/s10973-012-2749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2749-9

Keywords

Navigation