Skip to main content
Log in

Particle size effects on the thermal behavior of hematite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hematite with different particle sizes was obtained through isothermal annealing and mechanochemical ball-milling methods. The hematite phase is very stable under air atmosphere. The thermal stabilities of hematite under argon atmosphere were characterized by thermal analysis studies up to 800 °C using a simultaneous DSC–TG technique. The lattice parameters a and c of hematite with different particle sizes were extracted from the Rietveld structural refinement of powder X-ray diffraction patterns. Decomposition of hematite into a lower oxidation state in inert argon atmosphere was studied by the TG experiments for the first time and the enthalpy associated with the decomposition reaction was determined from the DSC studies. Particle size has a strong effect on the thermal behavior of hematite samples. Ball-milled hematite samples with smaller particle size showed that the phase transformation was extended to higher temperature range with larger enthalpy. Hematite with larger average particle size showed higher stability under argon atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang GX, Gou XL, Horvat J, Park J. Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J Phys Chem C. 2008;112:15220–5.

    Article  CAS  Google Scholar 

  2. Raffaella B, Etienne S, Cinzia G, Fabia G, Mar GH, Miguel AG, Roberto C, Pantaleo DC. Colloidal semiconductor/magnetic heterostructures based on iron-oxide-functionalized brookite TiO2 nanorods. Phys Chem Chem Phys. 2009;11:3680–91.

    Google Scholar 

  3. Winter G. Anorganic pigments: dispersed festkörper mit technisch verwertbaren optischen und magnetischen eigenschaften. Fortschr Miner. 1979;57:172–202.

    CAS  Google Scholar 

  4. Krishnamoorthy S, Rivas JA, Amiridis MD. Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J Catal. 2000;193:264–72.

    Article  CAS  Google Scholar 

  5. Sorescu M, Diamandescu L, Tomescu A, Tarabasanu-Mihaila D, Teodorescu V. Structure and sensing properties of 0.1SnO2–0.9-Fe2O3 system. Mater Chem Phys. 2008;107:127–31.

    Article  CAS  Google Scholar 

  6. Laberty C, Navrotsky A. Energetics of stable and metastable low-temperature iron oxides and oxyhydroxides. Geochim Costmochim Acta. 1998;62:2905–13.

    Article  CAS  Google Scholar 

  7. Greedan JE. Magnetic oxides. In: King RB, editor. Encyclopedia of inorganic chemistry. New York: Wiley; 1994.

    Google Scholar 

  8. Bernal JD, Dasgupta DR, Mackay AL. The oxides and hydroxides of iron and their structural inter-relationships. Clay Miner Bull. 1959;4:15–30.

    Article  CAS  Google Scholar 

  9. Scholder R. Recent investigations on oxometallates and double oxides. Anges Chem. 1962;1:220–4.

    Article  Google Scholar 

  10. Gump JR, Wagner WF, Schreyer JM. Preparation and analysis of barium ferrate (VI). Anal Chem. 1954;26:1957.

    Article  CAS  Google Scholar 

  11. Ichida T. Mössbauer study of the thermal decomposition products of BaFeO4. J Solid State Chem. 1973;7:308–15.

    Article  CAS  Google Scholar 

  12. Withers RL, Bursill LA. Higher-order structural relationships between hematite and magnetite. J Appl Crystallogr. 1980;13:346–53.

    Article  CAS  Google Scholar 

  13. Barbier A, Weiss W, Van Hove MA, Somorjai GA. Magnetite Fe3O4(111): surface structure by LEED crystallography and energetic. Surf Sci. 1994;302:259–79.

    Article  Google Scholar 

  14. Gautier-Soyer M, Pollack M, Henriot M, Guittet MJ. The (1 × 2) reconstruction of the α-Fe2O3 (\( {\bar{1}}012\)) surface. Surf Sci. 1996;352–354:112–6.

    Article  Google Scholar 

  15. Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YP. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano. 2009;3:2798–808.

    Article  CAS  Google Scholar 

  16. Navrotsky A, Mazeina L, Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides. Science. 2008;319:1635–8.

    Article  CAS  Google Scholar 

  17. Jozwiak W, Kaczmarek E, Maniecki TP, Ignaczak W, Maniukiewicz W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A. 2007;326:17–27.

    Article  CAS  Google Scholar 

  18. Misono M, Sakata K, Ueda F, Nozawa Y, Yoneda Y. Catalytic properties of iron oxide III. Oxidative dehydrogenation of butenes over iron oxide catalysts. Bull Chem Soc Jpn. 1980;53:648–52.

    Article  CAS  Google Scholar 

  19. Holleman AF, Wiberg E. Inorganic chemistry. San Diego: Academic Press; 2001.

    Google Scholar 

  20. Sorescu M, Xu TH, Diamandescu L. Synthesis and characterization of xTiO2·(1 − x)α-Fe2O3 magnetic ceramic nanostructure system. Mater Character. 2010;61:1103–18.

    Article  CAS  Google Scholar 

  21. Sorescu M, Xu TH. The effect of ball-milling on the thermal behavior of anatase doped hematite systems. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-1016-1.

  22. Snow CL, Lee CR, Shi Q, Boerio-Goates J, Woodfield BF. Size-dependence of the heat capacity and thermodynamic properties of hematite (α-Fe2O3). J Chem Thermodyn. 2010;42:1142–51.

    Article  CAS  Google Scholar 

  23. Sorescu M, Diamandescu L. Mechanochemical and magnetomechanical synthesis of hematite nanoparticles. Hyperfine Interact. 2010;196:349–58.

    Article  CAS  Google Scholar 

  24. Lin CR, Chiang RK, Cheng CJ, Lai HY, Lyubutin IS, Alkaev EA. Preparation of magnetite nanoparticles by thermal decomposition of hematite powder in the presence of organic solvent. In: Pappas DP, editor. Nanoscale magnetics and device applications. Mater Res Soc Symp Proc; 2007. 998E: 0998-J08-05.

  25. Fellows RA, Lennie AR, Raza H, Pang CL, Thornton G, Vaughan DJ. Fe3O4 formation on a reduced α-Fe2O3 (\( 11{\bar{2}}3\)) substrate: a low-energy electron diffraction and scanning tunneling microscopy study. Surf Sci. 2000;445:11–7.

    Article  CAS  Google Scholar 

  26. Betancur JD, Restrepo J, Palacio CA. Thermally driven and ball-milled hematite to magnetite transformation. Hyperfine Interact. 2003;148:163–75.

    Article  Google Scholar 

  27. Wiltowski T, Piotrowski K, Lorethova H, Stonawski L, Mondal K, Lalvani SB. Neural network modeling of iron oxide reduction kinetics. Chem Eng Proc. 2005;44:775–83.

    Article  CAS  Google Scholar 

  28. Piotrowski K, Mondal K, Lorethova H, Stonawski L, Szymanski T, Wiltowski T. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen process. Int J Hydrogen Energy. 2005;30:1543–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation under grant number DMR-0854794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Sorescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorescu, M., Xu, T. Particle size effects on the thermal behavior of hematite. J Therm Anal Calorim 107, 463–469 (2012). https://doi.org/10.1007/s10973-011-1685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1685-4

Keywords

Navigation