Skip to main content
Log in

Al2O3/K2O-containing non-stoichiometric lithium disilicate-based glasses

A study of crystallisation kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallisation kinetics of experimental glasses in 3 different systems: (A) Li2O–SiO2, (B) Li2O–Al2O3–SiO2 and (C) Li2O–K2O–Al2O3–SiO2 were studied under non-isothermal conditions. The DTA results revealed a stronger tendency to crystallisation of binary compositions in comparison to the ternary and quaternary compositions comprising Al2O3 and K2O which present the lower crystallisation, i.e. the crystallisation propensity follows the trend A > B > C. The devitrification process in the Li2O–SiO2 and Li2O–Al2O3–SiO2 systems began earlier and the rate was higher in comparison to that of glasses in the quaternary Li2O–K2O–Al2O3–SiO2 system. Thus, addition of Al2O3 and K2O to glasses of Li2O–SiO2 system was demonstrated to promote glass stability against crystallisation. However, the activation energy for crystallisation was shown to depend also on the SiO2/Li2O ratio with the binary system showing a decreasing trend with increasing SiO2/Li2O ratio, while the opposite tendency was being observed for compositions with added Al2O3 and K2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.

    Google Scholar 

  2. Mehta N, Kumar A. Applicability of Kissinger’s relation in the determination of activation energy of glass transition process. J Optoelectron Adv Mater. 2005;7(3):1473–8.

    CAS  Google Scholar 

  3. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem-US. 1974;78(26):2673–7.

    Article  CAS  Google Scholar 

  4. Dakui D, Fuding M, Zhengxie Y, Meixin Z. Kinetic study of the crystallization of ZrF4–BaF2–LaF3–AlF3 glasses. J Non-Cryst Solids. 1989;112(1–3):238–43.

    Article  Google Scholar 

  5. Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non-Cryst Solids. 1986;81(1–2):129–34.

    Article  CAS  Google Scholar 

  6. Avrami M. Kinetics of phase change I: general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  7. Avrami M. Kinetics of phase change II: transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  8. El-Salam A, Abousehly M. Activation energy of Se2Ge0.2Sb0.8 chalcogenide glass by differential scanning calorimetry. J Therm Anal Calorim. 1996;46(1):177–86.

    Article  Google Scholar 

  9. Starink MJ, Zahra AM. Determination of the transformation exponent s from experiments at constant heating rate. Thermochim Acta. 1997;298:179–89.

    Article  CAS  Google Scholar 

  10. Vázquez J, López-Alemany PL, Villares P, Jiménez-Garay R. Generalization of the Avrami equation for the analysis of non-isothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy. J Phys Chem Solids. 2000;61:493–500.

    Article  Google Scholar 

  11. Avrami M. Kinetics of phase change III: granulation, phase change, and microstructure. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  12. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  13. Lasocka M. Thermal stability of Ge–As–Te–in glasses. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  14. Lezal D, Zavadil J, Prochazka M. Sulfide, selenide and telluride glassy systems for optoelectronic applications. J Optoelectron Adv M. 2005;7:2281–91.

    CAS  Google Scholar 

  15. Joshi SR, Pratap A, Saxena NS, Saksena MP, Kumar A. Heating rate and composition dependence of the glass transition temperature of a ternary chalcogenide glass. J Mater Sci Lett. 1994;13(2):77–9.

    Article  CAS  Google Scholar 

  16. Lin C, Li Z, Ying L, Xu Y, Zhang P, Dai S, Xu T, Nie Q. Network structure in GeS2–Sb2S3 chalcogenide glasses: raman spectroscopy and phase transformation study. J Phys Chem-USC. 2012;116(9):5862–7.

    CAS  Google Scholar 

  17. Shelby JE. Effect of morphology on the properties of alkaline earth silicate glasses. J Appl Phys. 1979;50:8010–5.

    Article  CAS  Google Scholar 

  18. Vogel W. Structure and crystallization of glasses. Leipzig: Pergamon Press; 1971.

    Google Scholar 

  19. Giridhar A, Mahadevan S. The T g versus Z dependence of glasses of the Ge–In–Se system. J Non-Cryst Solids. 1992;151(3):245–52.

    Article  CAS  Google Scholar 

  20. Rabinal MK, Sangunni KS, Gopal ESR. Chemical ordering in Ge20Se80−x In x glasses. J Non-Cryst Solids. 1995;188(1–2):98–106.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  22. White K, Crane RL, Snide JA. Crystallization kinetics of As2 − xSbxS3 glass in bulk and thin film form. J Non-Cryst Solids. 1988;103(2–3):210–20.

    Article  CAS  Google Scholar 

  23. Imran MMA, Bhandari D, Saxena NS. Enthalpy recovery during structural relaxation of Se96In4 chalcogenide glass. Phys B. 2001;293(3–4):394–401.

    Article  CAS  Google Scholar 

  24. Agarwal P, Goel S, Rai JSP, Kumar A. Calorimetric studies in glassy Se80 − xTe20Inx. Phys Status Solidi A. 1991;127(2):363–9.

    Article  CAS  Google Scholar 

  25. Deepika KSR, Saxena NS. Kinetics of phase transformations and thermal stability of Se58Ge42−xPbx (x = 15, 18 and 20) glasses. N J Glass Ceram. 2012;2:23–33.

    Article  CAS  Google Scholar 

  26. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. T Am Inst Min Eng. 1939;135:416–72.

    Google Scholar 

  27. Matusita K, Sakka S. Kinetic study of crystallization of glass by differential thermal analysis––Criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741–6.

    Article  Google Scholar 

  28. Fernandes HR, Tulyaganov DU, Goel A, Ferreira JMF. Structural characterisation and thermo-physical properties of glasses in the Li2O–SiO2–Al2O3–K2O system. J Therm Anal Calorim. 2011;103(3):827–34.

    Article  CAS  Google Scholar 

  29. Fernandes HR, Tulyaganov DU, Goel A, Ribeiro MJ, Pascual MJ, Ferreira JMF. Effect of Al2O3 and K2O content on structure, properties and devitrification of glasses in the Li2O–SiO2 system. J Eur Ceram Soc. 2010;30(10):2017–30.

    Article  CAS  Google Scholar 

  30. Fernandes HR, Tulyaganov DU, Pascual MJ, Kharton VV, Yaremchenko AA, Ferreira JMF. The role of K2O on sintering and crystallization of glass powder compacts in the Li2O–K2O–Al2O3–SiO2 system. J Eur Ceram Soc. 2012;32(2):2283–92.

    Article  CAS  Google Scholar 

  31. Fernandes HR, Tulyaganov DU, Goel A, Ferreira JMF. Effect of K2O on structure-property relationships and phase transformations in Li2O–SiO2 glasses. J Eur Ceram Soc. 2012;32(2):291–8.

    Article  CAS  Google Scholar 

  32. Hammetter WF, Loehman RE. Crystallization kinetics of a complex lithium silicate glass–ceramic. J Am Ceram Soc. 1987;70(8):577–82.

    Article  CAS  Google Scholar 

  33. Oliveira APN, Alarcon OE, Manfredini T, Pellacani GC, Siligardi C. Crystallisation kinetics of a 2.3Li2O.1.1ZrO2.6.6SiO2 glass. Phys Chem Glasses. 2000;41(2):100–3.

    Google Scholar 

  34. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  35. Matusita K, Sakka S. Kinetics study of the crystallization of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20(4):81–4.

    CAS  Google Scholar 

  36. Matusita K, Sakka S. Kinetic study on non-isothermal crystallization of glass by thermal analysis. Bull Inst Chem Res. 1981;59(3):159–71.

    CAS  Google Scholar 

Download references

Acknowledgements

Hugo R. Fernandes is grateful for the financial support of CICECO and for the PhD Grant (SFRH/BD/41307/2007) from the FCT, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo R. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, H.R., Tulyaganov, D.U. & Ferreira, J.M.F. Al2O3/K2O-containing non-stoichiometric lithium disilicate-based glasses . J Therm Anal Calorim 112, 1359–1368 (2013). https://doi.org/10.1007/s10973-012-2692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2692-9

Keywords

Navigation