Skip to main content
Log in

TG–DTG–DTA in studying white self-compacting cement mortars

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Self-compacting cement mortars and concretes are characterized with an excellent workability and with high early strengths, which makes them suitable for elements in pre-cast concrete. Both the dense structure and the non-defected surface of self-compacting mixes are achieved by the incorporation of relatively large amounts of fine mineral additives and use of polycarboxylate admixtures. All these advantages determine the great potential for manufacturing of architectural elements and details. However, there exist many features in the structure-formation and the hardening of these systems. The authors investigate in this study the evolution of the process of curing and the crystal formation up to the 120th days of water-curing. Moreover, the effects of replacement of 10 wt% white cement with natural zeolite are studied. Special attention is paid to the thermal analysis through which one determines the effects of dehydration of the new-formed crystal hydrates, de-carbonization of carbonate-containing phases, and zeolite incorporation. Differences in the thermal behaviour of self-compacting mortars are compared with two types of referent samples. The thermal experiments were complemented with physical–mechanical and structural measurements, including mercury intrusion porosimetry, powder X-ray diffraction and scanning electron microscopy. Experiments and analysis, both determining the development of the microstructure, indicate the formation of a dense structure of white self-compacting mortars. This is achieved at the early age impeding the growth of new crystals. The incorporation of zeolite increases the early strengths of samples, thus making the structure denser, and completely blocking the water permeability. As the zeolite is a soft and ductile mineral, it can be expected that the volume deformations of microstructure of the zeolite-containing mortars, are reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SCM:

Self-compacting cement mortars

XRD:

Powder X-ray diffraction

MIP:

Mercury intrusion porosimetry

SEM:

Scanning electron microscopy

W/P:

Water-to-powder ratio

HRWR:

High range water reducer

C–S–H:

Calcium silicate hydrate

References

  1. Forde MC, editors. ICE manual of construction. Thomas Telford Publishing; 2009. p. 928.

  2. Corradi M. Concrete for the construction industry of tomorrow. In: Konsta-Gdoutos MS, editor. Measuring, monitoring and modeling concrete properties. Amsterdam: Springer; 2006. p. 429–40.

    Chapter  Google Scholar 

  3. Sukumar B, Nagamani K, Srinivasa Raghavan. Evaluation of strength at early ages of self-compacting concrete with high volume fly ash. Constr Build Mater. 2008;22:1394–401.

    Article  Google Scholar 

  4. Uysal M, Yilmaz K. Effect of mineral admixtures on properties of self-compacting concrete. Cement Concr Compos. 2011;33:771–6.

    Article  CAS  Google Scholar 

  5. Parra C, Valcuende M, Gómez F. Splitting tensile strength and modulus of elasticity of self-compacting concrete. Constr Build Mater. 2011;25:201–7.

    Article  Google Scholar 

  6. López A, Tobes JM, Giaccio G, Zerbino R. Advantages of mortar-based design for coloured self-compacting concrete. Cement Concr Compos. 2009;31:754–61.

    Article  Google Scholar 

  7. Stoyanov V. Investigation of properties of decorative mortars besed on design of experiments In: Proceedings of the international conference on civil engineering design and construction. (Eurocodes – Science and Practice) DCB; 2010. p. 09–11.

  8. Stoyanov V, Kolentzov S. Effects of fiber content on the properties of high-fluidity mortars for decorative applications. In: Barovsky N, editors. Proceedings of the 12th international conference on mechanics and technology of composite materials, Varna; 2009. p. 130–136.

  9. Ramachandran VS. Elucidation of the role of chemical admixtures in hydrating cements by DTA technique. Thermochim Acta. 1972;4:343–66.

    Article  CAS  Google Scholar 

  10. Roszczynialski W. Determination of pozzolanic activity of materials by thermal analysis. J Therm Anal Calorim. 2002;70:387–92.

    Article  CAS  Google Scholar 

  11. Pacewska B, Blonkowski G, Wilińska I. Studies on the pozzolanic and hydraulic properties of fly ashes in model systems. J Therm Anal Calorim. 2008;94:469–76.

    Article  CAS  Google Scholar 

  12. Ashraf M, Naeem Khan A, Qasair Ali, Mirza J, Goyal A, Anwar AM. Physico-chemical, morphological and thermal analysis for the combined pozzolanic activities of minerals additives. Constr Build Mater. 2009;23:2207–13.

    Article  Google Scholar 

  13. Martínez-Ramírez S, Frías M. The effect of curing temperature on white cement hydration. Constr Build Mater. 2009;23(3):1344–8.

    Article  Google Scholar 

  14. Tsivilis S, Kakali G, Chaniotakis E, Souvaridou A. A study on the hydration of Portland limestone cement by means of TG. J Therm Anal Calorim. 1998;52:863–70.

    Article  CAS  Google Scholar 

  15. Péra J, Husson S, Guilhot B. Influence of finely ground limestone on cement hydration. Cement Concr Compos. 1999;21:99–105.

    Article  Google Scholar 

  16. Darweesh HHM. Limestone as an accelerator and filler in limestone-substituted alumina cement. Ceram Int. 2004;30(3):145–50.

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhang X. Research on effect of limestone and gypsum on C3A, C3S and PC clinker system. Constr Build Mater. 2008;22(8):1634–42.

    Article  Google Scholar 

  18. Janotka I, Krajči L’. Sulphate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. J Therm Anal Calorim. 2008;94:7–14.

    Google Scholar 

  19. Kontori E, Perraki T, Tsivilis S, Kakali G. Zeolite blended cements: evaluation of their hydration rate by means of thermal analysis. J Therm Anal Calorim. 2009;96:993–8.

    Article  CAS  Google Scholar 

  20. Perraki T, Kontori E, Tsivilis S, Kakali G. The effect of zeolite on the properties and hydration of blended cements. Cement Concr Compos. 2010;32:128–33.

    Article  CAS  Google Scholar 

  21. Snellings R, Mertens G, Elsen J. Calorimetric evolution of the early pozzolanic reaction of natural zeolites. J Therm Anal Calorim. 2010;101:97–105.

    Article  CAS  Google Scholar 

  22. Ye G, Liu X, De Schutter G, Taerwe L, Vandevelde P. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature. Cem Concr Res. 2007;37:978–87.

    Article  CAS  Google Scholar 

  23. Bakhtiyari S, Allahverdi A, Rais-Ghasemi M, Zarrabi BA, Parhizkar T. Self-compacting concrete containing different powders at elevated temperatures—mechanical properties and changes in the phase composition of the paste. Thermochim Acta. 2011;514:74–81.

    Article  CAS  Google Scholar 

  24. Fares H, Remond S, Noumowe A, Cousture A. High temperature behaviour of self-consolidating concrete: microstructure and physicochemical properties. Cem Concr Res. 2010;40:488–96.

    Article  CAS  Google Scholar 

  25. EN 197-1:2011. Cement: part 1: composition, specifications and conformity criteria for common cements.

  26. EFNARC. Specification and guidelines for self-compacting concrete. European federation for specialist construction chemicals and concrete systems, Norfolk (English ed.). The European Guidelines for Self Compacting Concrete; 2005.

  27. EN 196-1:2005. Methods of testing cement—part 1: determination of strength.

  28. ASTM C642. 06 standard test method for density, absorption, and voids in hardened concrete.

  29. Richardson IG. The calcium silicate hydrates. Cem Concr Res. 2008;38:137–58.

    Article  CAS  Google Scholar 

  30. Taylor R, Richardson IG, Brydson RMD. Composition and microstructure of 20-year-old ordinary Portland cement–ground granulated blast-furnace slag blends containing 0 to 100 % slag. Cem Concr Res. 2010;40:971–83.

    Article  CAS  Google Scholar 

  31. Petkova V, Serafimova E, Petrova N, Pelovski Y. Thermochemistry of triboactivated natural and NH4-exchanged clinoptilolite mixed with Tunisian apatite. J Therm Anal Calorim. 2011;105:535–44.

    Article  CAS  Google Scholar 

  32. Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cement hydration. Cem Concr Res. 2007;37:551–8.

    Article  CAS  Google Scholar 

  33. Taylor HFW. Cement chemistry. 2d ed. London: Thomas Telford Publishing; 1997.

    Book  Google Scholar 

  34. Aguilera J, Martınez-Ramırez S, Pajares-Colomo I, Blanco-Varela MT. Formation of thaumasite in carbonated mortars. Cement Concr Compos. 2003;25:991–6.

    Article  CAS  Google Scholar 

  35. Barnett SJ, Adam CD, Jackson ARW. Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12·26H2O, and thaumasite, Ca3SiSO4CO3(OH)6·12H2O. J Mater Sci. 2000;35:4109–14.

    Article  CAS  Google Scholar 

  36. Perraki Th, Kakali G, Kontori E. Characterization and pozzolanic activity of thermally treated zeolite. J Therm Anal Calorim. 2005;82:109–13.

    Article  CAS  Google Scholar 

  37. Perraki Th, Kakali G, Kontoleon F. The effect of natural zeolites on the early hydration of Portland cement. Microporous Mesoporous Mater. 2003;61:205–12.

    Article  CAS  Google Scholar 

  38. Famy C, Brough AR, Taylor HFW. The C–S–H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C–S–H, AFm and Aft phase compositions. Cem Concr Res. 2003;33:1389–98.

    Article  CAS  Google Scholar 

  39. Balonis M, Glasser FP. The density of cement phases. Cem Concr Res. 2009;39:733–9.

    Article  CAS  Google Scholar 

  40. Gruskovnjak A, Lothenbach B, Winnefeld F, Figi R, Ko S-C, Adler M, Mäder U. Hydration mechanisms of super sulphated slag cement. Cem Concr Res. 2008;38:983–92.

    Article  CAS  Google Scholar 

  41. Drábik M, Tunega D, Balkovic S, Fajnor VŠ. Computer simulations of hydrogen bonds for better understanding of the data of thermal analysis of thaumasite. J Therm Anal Calorim. 2006;85(2):469–75.

    Article  Google Scholar 

  42. Chaipanich A, Nochaiya Th. Thermal analysis and microstructure of Portland cement-fly ash-silica fume pastes. J Therm Anal Calorim. 2010;99:487–93.

    Article  CAS  Google Scholar 

  43. Adams J, Dollimore D, Griffiths DL. Thermal analytical investigation of unaltered Ca(OH)2 in dated mortars and plasters. Thermochim Acta. 1998;324:67–76.

    Article  CAS  Google Scholar 

  44. Dollimore D, Gupta JD, Lerdkanchanaporn S Sr, Nippani A. Thermal analysis study of recycled portland cement concrete (RPCC) aggregates. Thermochim Acta. 2000;357–358:31–40.

    Article  Google Scholar 

  45. Pacewska B, Wiliñska Iw, Bukowska M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009;97(1):61–6.

    Article  CAS  Google Scholar 

  46. Vessalas K, Thomas PS, Ray AS, Guerbois J-P, Joyce P, Haggman J. Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. J Therm Anal Calorim. 2009;97(1):71–6.

    Article  CAS  Google Scholar 

  47. Jo Dwecka, Mauricio Buchler P, Coelho ACV, Cartledge FK. Hydration of a Portland cement blended with calcium carbonate. Thermochim Acta. 2000;346:105–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Petkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkova, V., Stoyanov, V. & Pelovski, Y. TG–DTG–DTA in studying white self-compacting cement mortars. J Therm Anal Calorim 109, 797–806 (2012). https://doi.org/10.1007/s10973-012-2447-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2447-7

Keywords

Navigation