Skip to main content
Log in

Thermal and spectroscopic studies of solid oxamate of light trivalent lanthanides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid-state LnL3·1.25H2O compounds, where L is oxamate and Ln is light trivalent lanthanides, have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG–DSC), experimental and theoretical infrared spectroscopy, TG–DSC coupled to FTIR, elemental analysis, complexometry, and X-ray powder diffractometry were used to characterize and to study the thermal behavior of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, and gaseous products evolved during the thermal decomposition of these compounds in dynamic air atmosphere. The dehydration occurs in a single step and through a slow process. The thermal decomposition of the anhydrous compounds occur in a single (Ce), two (Pr), and three (La, Nd to Gd) steps with the formation of the respective oxides, CeO2, Pr6O11, and Ln2O3 (Ln = La, Nd to Gd). The theoretical and experimental spectroscopic study suggests that the carboxylate group and amide carbonyl group of oxamate are coordinate to the metals in a bidentate chelating mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wallace F, Wagner E. Infrared and far-infrared spectra of solid oxamic acid, deutero-oxamic acid and their salts. Spectrochim Acta A. 1978;34:589–606.

    Article  Google Scholar 

  2. Perlepes SP, Zafiropoulos THF, Kouinis JK, Galinos AG. Complexes of zinc-group metals with oxamic acid. Inorg Nucl Chem Lett. 1980;16:475–80.

    Article  CAS  Google Scholar 

  3. Shoeters G, Deleersnuder D, Desseyn HO. The complexes of oxamic acid with Ni(II). Spectrochim Acta A. 1983;39:71–6.

    Article  Google Scholar 

  4. Allan JR, Dalrymple J. The thermal, spectral and magnetic studies of oxamic acid compounds of cobalt(II), nickel(II) and copper(II) ions. Thermochim Acta. 1993;221:199–204.

    Article  CAS  Google Scholar 

  5. Vansant C, Desseyn HO, Perlepes SP. The synthesis, spectroscopic and thermal study of oxamic acid compounds of some metal(II) ions. Trans Met Chem. 1995;20:454–9.

    Article  CAS  Google Scholar 

  6. Keuleers R, Janssens J, Desseyn HO. Thermal analysis of oxamates, thiooxamates and their complexes Part 1 The ligands. Thermochim Acta. 1998;311:149–54.

    Article  CAS  Google Scholar 

  7. Keuleers R, Janssens J, Desseyn HO. Thermal analysis of oxamates, thiooxamates and their complexes Part 2. The Cu(II) complexes. Thermochim Acta. 1998;311:155–62.

    Article  CAS  Google Scholar 

  8. Rodrigues-Martin Y, Ruiz-Pérez C, Gonzáles-Platas J, Sanchiz J, Lloret F, Julve M. A new eight-coordinate complex of manganese(II): synthesis, crystal structure, spectroscopy and magnetic properties of [Mn(Hoxam)2(H2O)4] (H2 oxam_oxamic acid). Inorg Chim Acta. 2001;315:120–5.

    Article  Google Scholar 

  9. Caires FJ, Lima LS, Carvalho CT, Siqueira AB, Treu-Filho O, Ionashiro M. Thermal and spectroscopic data to investigate the oxamic acid, sodium oxamate and its compounds with some bivalent transition metal ions. J Therm Anal Calorim. 2011;107:335–344.

    Google Scholar 

  10. Nunes RS, Bannach G, Luiz JM, Caires FJ, Carvalho CT, Ionashiro M. Thermal studies on solid 1,4-bis(3-carboxy-3-oxo-prop-1-enyl) benzene of lighter trivalent lanthanides. J Therm Anal Calorim. 2011;1006:525–9.

    Article  Google Scholar 

  11. Dametto PR, Caires FJ, Ambrozini B, Ionashiro M. Synthesis, characterization and thermal behaviour of light trivalent lanthanides folates on solid state. J Therm Anal Calorim. 2011;1005:831–6.

    Article  Google Scholar 

  12. Perlepes SP, Zafiropoulos TF, Kouinis JK, Galinos AG. Lanthanide(III) complexes of oxamic acid. Z Naturforsch B. 1981;36:697–703.

    Google Scholar 

  13. Veltsistas PG, Christos PD, Karayannis MI. Synthesis and X-ray structure of an (oxamato)praseodymium polymer, [Pr(HNCOCO2)1.5(H2O)3]n·2.75H2O. Polyhedron. 1995;14:1251–3.

    Article  CAS  Google Scholar 

  14. Lazaridou V, Perlepes SP, Tsangaris M. Synthesis, physical properties ans spectroscopic studies of oxamato (-1) lanthanide(III) omplexes. J Less-Common Met. 1990;158:1–14.

    Article  CAS  Google Scholar 

  15. D’Assunção LM, Giolito I, Ionashiro M. Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium. Thermochim Acta. 1980;137:319–30.

    Article  Google Scholar 

  16. Flaschka HA. EDTA titrations. 2nd ed. Oxford: Pergamon Press; 1964.

    Google Scholar 

  17. Ionashiro M, Graner CAF, Zuanon Netto J. Titulação complexométrica de lantanídeos e ítrio. Ecl Quim. 1983;8:29–32.

    CAS  Google Scholar 

  18. Becke AD. Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG. Development of the colle-salvetti correlation-energy formula into a functional of the electrondensity. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  20. Treu-Filho O, Pinheiro JC, da Costa EB, Ferreira JEV, de Figueiredo AF, Kondo RT, de Lucca Neto VA, de Souza RA, Legendre AO, Mauro AE. Experimental and theoretical study of the compound [Pd(dmba)(NCO)(imz)]. J Mol Struct. 2007;829:195–201.

    Article  CAS  Google Scholar 

  21. Treu Filho O, Pinheiro JC, Kondo RT, Marques RFC, Paiva-Santos CO, Davolos MR, Jafelicci M Jr. Gaussian basis sets to the theoretical study of the electronic structure of perovskite (LaMnO3). J Mol Struct (Theochem). 2003;631:93–9.

    Article  CAS  Google Scholar 

  22. Treu Filho O, Pinheiro JC, Kondo RT. Designing Gaussian basis sets to the theoretical study of the piezoelectric effect of perovskite (BaTiO3). J Mol Struct. 2004;671:71–5.

    CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision A.02. Wallingford CT: Gaussian, Inc; 2009.

  24. Goodson DZ, Sarpal SK, Wolfsberg M. Influence on isotope effect calculations of the method of obtaining force constants from vibrational data. J Phys Chem. 1982;86:659–63.

    Article  CAS  Google Scholar 

  25. Schelegel HB. In: Bertran J, editor. New theoretical concepts for understanding organic reactions. Dordrecht: Kluwer Academic Publishers; 1989. p. 33–53.

    Chapter  Google Scholar 

  26. Dennington R, Keith T, Millam J. GaussView, Version 5.0.8. Semichem Inc., Shawnee Mission KS; 2000–2008.

  27. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. John Wiley & Sons: New York; 2005.

    Google Scholar 

  28. Lima LS, Caires FJ, Carvalho CT, Siqueira AB, Ionashiro M. Synthesis, characterization and thermal behaviour of solid-state compounds of light trivalent lanthanide succinates. Thermochim Acta. 2010;501:50–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support. This research was supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the Sao Paulo State University (UNESP), Instituto de Química de Araraquara, UNESP – Campus de Araraquara and CENAPAD-UNICAMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caires, F.J., Lima, L.S., Gomes, D.J.C. et al. Thermal and spectroscopic studies of solid oxamate of light trivalent lanthanides. J Therm Anal Calorim 111, 349–355 (2013). https://doi.org/10.1007/s10973-012-2220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2220-y

Keywords

Navigation