Skip to main content
Log in

Synthesis, characterization, thermal behavior, and DFT calculation of solid 1,4-bis(3-carboxy-3-oxo-prop-1-enyl) benzene of some trivalent lanthanides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid-state Ln2L3·nH2O compounds, where Ln represents trivalent lanthanides (from Eu to Lu and Y, except Dy) and L is 1,4-bis(3-carboxy-3-oxo-prop-1-enyl) benzene, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG–DTA), differential scanning calorimetry, X-ray powder diffractometry, infrared spectroscopy, and complexometry were used to characterize and to study the thermal behavior of these compounds. The dehydration of the compounds occurred until at 445 K (Y), at 440 K (Tb), and at 489 K (Eu, Gd, Ho, Er, Tm, Yb, and Lu). After dehydration, the DTA curves showed two other thermal events that are associated with the thermal decomposition of the compounds with formation of the respective oxides. The results also provided information about the composition, dehydration, crystallinity, and thermal decomposition of these compounds. Furthermore, the theoretical and experimental spectroscopic data suggest the possible modes of coordination of the ligand with the metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lima LS, Caires FJ, Gigante AC, Gomes DJC, Siqueira AB, Carvalho CT, Ionashiro M. Synthesis, characterization and thermal behavior of solid state compounds of heavy trivalent lanthanide succinates. Thermochim Acta. 2013;557:31–6.

    Article  CAS  Google Scholar 

  2. Gigante AC, Gomes DJC, Lima LS, Caires FJ, Treu-Filho O, Ionashiro M. Synthesis, thermal properties and spectroscopic study of solid mandelate of light trivalent lanthanides. Thermochim Acta. 2012;536:6–14.

    Article  CAS  Google Scholar 

  3. Ribeiro KL, Trindade MAG, Carvalho AE, Arruda EJ, Carvalho CT. Synthesis, characterization and thermal behaviour of light trivalent lanthanide 3,4-(methylenedioxy)cinnamate. Braz J Therm Anal. 2012;1:30–7.

    Google Scholar 

  4. Alves FS, Bembo LH, Caires FJ, Ionashiro EY. Thermoanalytical study of heavier trivalent lanthanides fumarates. J Therm Anal Calorim. 2012;113:739–44.

    Article  Google Scholar 

  5. Locatelli JR, Carvalho CT, Caires FJ, Ionashiro M. Synthesis, characterization and thermal behaviour of heavy trivalent lanthanide malonates. Eclética Química. 2010;35:93–100.

    Article  Google Scholar 

  6. Caires FJ, Gigante AC, Gomes DJC, Treu-Filho O, Ionashiro M. Synthesis, thermal behavior and spectroscopic study of trivalent lanthanide and yttrium(III) α-hydroxyisobutyrates, in solid state. Thermochim Acta. 2013;569:8–16.

    Article  CAS  Google Scholar 

  7. Caires FJ, Lima LS, Gomes DJC, Gigante AC, Treu-Filho O, Ionashiro M. Thermal and spectroscopic studies of solid oxamate of light trivalent lanthanides. J Therm Anal Calorim. 2013;111:349–55.

    Article  CAS  Google Scholar 

  8. Dametto PR, Caires FJ, Ambrozini B, Ionashiro M. Synthesis, characterization and thermal behaviour of light trivalent lanthanides folates on solid state. J Therm Anal Calorim. 2010;105:831–6.

    Article  Google Scholar 

  9. Bariccatti RA, Oliveira JDS. Fotoquímica e fotofísica do ácido. Eclética Química. 2004;29:15–8.

    Article  CAS  Google Scholar 

  10. Tanase T, Yun JW, Lippard SJ. Zinc-containing carboxylate-bridged heterodimetallic complexes and their reactions with phosphodiester ligands. Inorg Chem. 1996;35:3585–94.

    Article  CAS  Google Scholar 

  11. Milan M, Koman M, Hudecová D, Moncol J, Dudová B, Glowiak T, Mrozinski J, Holloway CE. Spectral and magnetic properties and bioactivity of copper(II) clofibriates Part I. Crystal and molecular structure of trans-Cu(clofibriate)2(nicotinamide)2. Inorg Chim Acta. 2000;308:1–7.

    Article  Google Scholar 

  12. Zelenák V, Györyová K. D M. Antibacterial and antifungal activity of zinc(II) carboxylates with/without N-donor organic ligands. Met Based Drugs. 2002;8:269–74.

    Article  Google Scholar 

  13. Koczoń P, Piekut J, Borawska M, Swisłocka R, Lewandowski W. The relationship between chemical structure and antimicrobial activity of selected nicotinates, p-iodobenzoates, picolinates and isonicotinates. Spectrochim Acta A. 2005;61:1917–22.

    Article  Google Scholar 

  14. Koczoń P, Piekut J, Borawska M, Lewandowski W. Vibrational structure and antimicrobial activity of selected isonicotinates, potassium picolinate and nicotinate. J Mol Struct. 2003;651–653:651–6.

    Article  Google Scholar 

  15. Solomons TWG, Fryhle CB. Organic chemistry. 10th ed. Hoboken, NJ: Wiley; 2011. p. 1275.

    Google Scholar 

  16. Nunes RS, Bannach G, Luiz JM, Caires FJ, Carvalho CT, Ionashiro M. Thermal studies on solid 1,4-bis(3-carboxy-3-oxo-prop-1-enyl)benzene of lighter trivalent lanthanides. J Therm Anal Calorim. 2011;106:525–9.

    Article  CAS  Google Scholar 

  17. Baba AI, Wang W, Kim WY, Strong L, Schmehl RH. Convenient synthesis of bis-bipyridines and bis-terpyridines bridged by phenyl and biphenyl tethers. Synth Commun. 1994;24:1029–36.

    Article  CAS  Google Scholar 

  18. Ionashiro M, Graner CAF, Zuanon-Netto J. Titulação complexométrica de lantanídeos e ítrio. Eclética Química. 1983;8:29–32.

    CAS  Google Scholar 

  19. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648.

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  21. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys. 1985;82:270–83.

    Article  CAS  Google Scholar 

  22. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys. 1985;82:284–98.

    Article  CAS  Google Scholar 

  23. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys. 1985;82:299–310.

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Wallingford CT: Gaussian, Inc; 2009.

  25. Goodson D, Sarpal SK, Bopp P, Wohsberg M. Influence on isotope effect calculations of the method of obtaining force constants from vibrational data. J Phys Chem. 1982;86:659–63.

    Article  CAS  Google Scholar 

  26. Schlegel HB. Some practical suggestions for optimizing geometries and locating transition states. In: Bertrán J, Csizmadia IG, editors. New theoretical concepts for understanding organic reactions. Dordrecht: Kluwer Academic Publishers; 1989. p. 33–5.

    Chapter  Google Scholar 

  27. Dennington R, Keith T, Millam J. GaussView, Version 5.0.8, Semichem Inc., Shawnee Mission KS; 2009.

  28. Gökce H, Bahçeli S. Quantum chemical computations of 1,3-phenylenediacetic acid. Spectrochim Acta A. 2011;78:803–8.

    Article  Google Scholar 

  29. Deacon GB, Phillips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  30. Caires FJ, Lima LS, de Carvalho CT, Giagio RJ, Ionashiro M. Thermal behaviour of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions. Thermochim Acta. 2010;497:35–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (Proc. 2006/06951-3) CAPES and CNPq (Proc. 472233/2008-4 and 150759/2009) for financial support. This research was supported by resources supplied by the Faculdade de Engenharia de Guaratinguetá (UNESP), Center for Scientific Computing (NCC/Grid UNESP) of the Sao Paulo State University (UNESP) and CENAPAD-UNICAMP, Instituto de Química de Araraquara (UNESP) and a special thanks to GFQM-IQ for X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Spezia Nunes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraretto, A.C., Nunes, R.S., Luiz, J.M. et al. Synthesis, characterization, thermal behavior, and DFT calculation of solid 1,4-bis(3-carboxy-3-oxo-prop-1-enyl) benzene of some trivalent lanthanides. J Therm Anal Calorim 118, 499–509 (2014). https://doi.org/10.1007/s10973-014-4016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4016-8

Keywords

Navigation