Skip to main content
Log in

Synthesis and characterization of the intermetallic compound NiSbS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The results recently obtained by our group to get new thermoelectric materials belonging to the M–Pn–Ch ternary systems (M=Co, Fe, Ni; Pn=P, As, Sb, Ch=S, Se, Te) are here reported. We have considered the Ni–Sb–S ternary system, and some homogeneous samples of composition near to 1:1:1 were prepared employing a new and simple synthetic route, starting from pure elements. Scanning electronic microscopy, electron-probe microanalysis and X-ray powder diffraction were used to investigate the microstructure. The NiSbS lattice parameters were determined and the crystal structure was refined by Rietveld method. The crystal cell of NiSbS belongs to the P213 space group with a = 0.5931 nm. The thermal stability of the ternary compounds Ni–Sb–S was investigated by DSC technique. Electrical resistivity and thermoelectric power measurements at room temperature and at 77 K were performed on platelets obtained by cleavage of the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takèuchi Y. The absolute structure of ullmanite, NiSbS. Miner J. 1957;2:90–102.

    Google Scholar 

  2. Foecker AJ, Jeitschko W. The atomic order of the pnictogen and chalcogen atoms in equiatomic ternary compounds TPnCh (T=Ni, Pd, Pn; Pn=P, As, Sb; Ch=S, Se, Te). J Solid State Chem. 2001;162:69–78.

    Article  CAS  Google Scholar 

  3. Johnston WD, Miller RC, Damon DH. Electrical properties of some compounds having the pyrite or marcasite structure. J Less Common Met. 1965;8:272–87.

    Article  CAS  Google Scholar 

  4. Allazov MR, Gulieva ZT. Physicochemical interaction in the CoS–Sb and NiS–Sb systems. Russ J Inorg Chem. 1988;33:1075–8.

    Google Scholar 

  5. Carlini R, Artini C, Borzone G, Masini R, Zanicchi G, Costa GA. Synthesis and characterization of the compound CoSbS. J Therm Anal Calorim. 2011;103:23–7.

    Article  CAS  Google Scholar 

  6. Guertler W, Schach H. Betrachtungenzur theoretischen metallhuttenkunde. Metal und erz. 1923;20:162–7.

    CAS  Google Scholar 

  7. Williams KL, Kullerud G. The Ni–Sb–S system. Carnegie Inst Wash Yearbook. 1970;68:270–3.

    Google Scholar 

  8. Shenck R, Van der Forst P. Gleichgewichtsstudien an erzbildenden sulfiden I. Zeits fuer anorg und allgem Chem. 1939;241:145–57.

    Article  Google Scholar 

  9. Shenck R, Van der Forst P. Gleichgewichtsstudien an erzbildenden sulfiden III. Zeits fuer anorg und allgem Chem. 1942;249:76–87.

    Article  Google Scholar 

  10. Lange W, Schlegel H. Diezustandsbilder der systeme eisen–antimon–schwefel und kobalt–antimon–schwefel. Zeits fuer metalkd. 1951;42:257–68.

    CAS  Google Scholar 

  11. Tesfaye Firdu F, Taskinen P. Thermodynamics and phase equilibria in the (Ni, Cu, Zn)–(As, Sb, Bi)–S systems at elevated temperatures (300–900°C), Aalto University, ISBN 978-952-3273-3.

  12. Hulliger F. Nature. 1963;198:382.

    Article  CAS  Google Scholar 

  13. Bayliss P. Subdivision of the pyrite group and a chimica and X-ray diffraction investigation of ullmannite. Can Mineral. 1986;24:27–33.

    CAS  Google Scholar 

  14. Bayliss P. Crystal structure refinement of arsenian ullmannite. Am Mineral. 1977;62:369–73.

    CAS  Google Scholar 

  15. Bayliss P. Isomorphous substitution in synthetic cobaltite and ullmannite. Am Mineral. 1969;54:426–30.

    CAS  Google Scholar 

  16. Berry LG, Thompson RM. X-ray powder data for the ore minerals. Geol Soc Am Mem. 1962;85:95–6.

    Google Scholar 

  17. Palache C, Berman H, Frondel C. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. New York: Yale University; 1944. p. 301–4.

  18. Kraus W, Nolze G. Powder cell-a program for the representation and manipulation of crystal structure and calculation of the resulting X-ray powder patterns. J Appl Cryst. 1996;29:301–3.

    Article  CAS  Google Scholar 

  19. Schwarzenbach D. Latcom: refine lattice parameters. Lausanne: University of Lausanne; 1966.

    Google Scholar 

  20. Palache C, Berman H, Frondel C. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. New York: Yale University; 1944. p. 1837–92.

    Google Scholar 

  21. Hulliger F. Helv Phys Acta. 1959;32:615.

    CAS  Google Scholar 

  22. Boettinger WJ, Kattner UR, Moon KW, Perepezko JH. DTA and heat-flux DSC Measurements of Alloy Melting and Freezing. Washington DC: National Institute of Standards and Technology Special Publication; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlini, R., Zanicchi, G., Borzone, G. et al. Synthesis and characterization of the intermetallic compound NiSbS. J Therm Anal Calorim 108, 793–797 (2012). https://doi.org/10.1007/s10973-012-2192-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2192-y

Keywords

Navigation