Skip to main content
Log in

Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The adsorption of lead (II) ions on three Algerian montmorillonites (sodium, non-sodium, and acidic-activated) was studied. Transmission electron microscopy coupled with energy dispersive X-ray analysis, X-ray fluorescence and physical adsorption of gases were used to characterize the clays. This characterization has shown than the activation with acid increases the surface area as a consequence of the rupture of the laminar structure. The effect of the pH in the lead adsorption capacity was analyzed. The results show that adsorption is strongly depended on the pH. At low pH values, the mechanism that governs the adsorption behavior of clays is the competition of the metal ions with protons. Between pH 2 and 6, the main mechanism is an ion exchange process. The kinetics of the adsorption is tested with respect to pseudo-first-order and second-order models. The adsorption process, gives a better fit with the Langmuir isotherm, being the monolayer capacity ranging between 18.2 and 24.4 mg g−1. The adsorption of lead decreased in the order Acidic-M2 > M2 > M1. Thermodynamic parameters such as ΔH, ΔS, and ΔG were calculated. The adsorption process was found to be endothermic and spontaneous. The enthalpy change for Pb(II) by M1 adsorption has been estimated as 60 kJ mol−1, indicating that the adsorption of Pb(II) by all montmorillonites used corresponds to a physical reaction. The adsorption capacity of washed Acidic-M2 was very high compared to M2 and M1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patterson JW. Industrial wastewater treatment technology. New York: Butterworth-Heinemann; 1985.

    Google Scholar 

  2. Adebowale KO, Unuabonah IE, Olu-Owolabi BI. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mat. 2006;34:130–9.

    Article  Google Scholar 

  3. Vogel C, Adam C, Unger M. Heavy metal removal from sewage sludge ash analyzed be thermogravimetry. J Therm Anal Calorim. 2011;103:243–8.

    Article  CAS  Google Scholar 

  4. Adebowale KO, Unuabonah IE, Olu-Owolabi BI. Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay. Chem Eng. J. 2008;136:99–107.

    Article  CAS  Google Scholar 

  5. Arfaoui S, Frini-Srasra N, Srasra E. Application of clays to treatment of tannery sewages. Desalination. 2005;185:419–24.

    Article  CAS  Google Scholar 

  6. Sakizci M, Alver BE, Yörükoğullari E. Termal and SO2 adsorption properties of some clays from Turkey. J Therm Anal Calorim. 2011;103:435–41.

    Article  CAS  Google Scholar 

  7. Celis R, Hermosín MC, Cornejo J. Heavy metal adsorption by functionalized clays. Environ Sci Technol. 2000;34:4593–9.

    Article  CAS  Google Scholar 

  8. Molina R, Vieiera-Coelho A, Poncelet G. Hydroxy-Al pillaring of concentrated clay suspensions. Clay Clay Miner. 1992;40:480–2.

    Article  CAS  Google Scholar 

  9. Oubagaranadin JUK, Murthy ZVP. Adsorption of divalent lead on a montmorillonite-illite type of clay. Ind Eng Chem Res. 2009;48:10627–36.

    Article  CAS  Google Scholar 

  10. Singh SP, Ma LQ, Hendry MJ. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies. J. Hazard Mater. 2006;136:654–62.

    Article  CAS  Google Scholar 

  11. Mahbouba R, El Mouzdahir Y, Elmchaouri A, Carvalho A, Pinto M, Pires J. Characterization of a delaminated clay and pillared clays bynadsorption of probe molecules. Colloids Surf A. 2006;280:81–7.

    Article  Google Scholar 

  12. Gok ASzcan, zcan A. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. J. Hazard Mater. 2009;161:499–509.

    Article  Google Scholar 

  13. Schoonheydt RA, Pinnavaia T, Lagaly G, Gangas N. Pillared clays and pillared layered solids. Pure Appl Chem. 1999;71:2367–71.

    Article  CAS  Google Scholar 

  14. Stoch L, Bahranowski K, Budek L, Fijal J. Mineral Pol. 1977;8:31–7.

    CAS  Google Scholar 

  15. Srivastava SK, Tyagi R, Pant N, Pal N. Studies on the removal of some toxic metal ions, Part II. Removal of lead and cadmium by montmorillonite and kaolinite. Environ Technol Let. 1989;10:275–82.

    Article  CAS  Google Scholar 

  16. Orumwense FFO. Removal of lead from water by adsorption on a kaolinitic clay. J Chem Technol Biotechnol. 1996;65:363–9.

    Article  CAS  Google Scholar 

  17. Chantawong V, Harvey NW, Bashkin VN. Adsorption of lead nitrate on Thai kaolin and ballclay. Asian J Energy Environ. 2001;2:33–48.

    Google Scholar 

  18. Lapides I, Yari S. Thermo-X-ray-diffraction analysis of dimethylsulfoxide-kaolinite intercalation complexes. J Therm Anal Calorim. 2009;97:2–19.

    Article  Google Scholar 

  19. Echeverría JC, Zarranz I, Estella J, Garrido JJ. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite. Appl Clay Sci. 2005;30:103–15.

    Article  Google Scholar 

  20. Naseem R, Tahir SS. Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 2001;35:3982–6.

    Article  CAS  Google Scholar 

  21. Donat R, Akdogan A, Erdem E, Cetisli H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci. 2005;286:43–52.

    Article  CAS  Google Scholar 

  22. Cicmanec P, Bulánek R, Frolich K. Thermodynamics of CO probe molecule adsorption on Cu–FER-zeolite comparison of TPD, FTIR, and microcalorimetry results. J Therm Anal Calorim. 2011;105:837–84.

    Article  CAS  Google Scholar 

  23. Zamzow MJ, Eichbaum BR, Sandgren KR, Shanks DE. Removal of heavy metals and other cations from wastewater using zeolites. Sep Sci Technol. 1990;25:1555–69.

    Article  CAS  Google Scholar 

  24. Ouki SK, Cheeseman C, Perry R. Effects of conditioning and treatment of chabazite and clinoptilolite prior to lead and cadmium removal. Environ Sci Technol. 1993;27:1108–16.

    Article  Google Scholar 

  25. Brigatti MF, Lugli C, Poppi L. Kinetics of heavy-metal removal and recovery in sepiolite. Appl Clay Sci. 2000;16:45–57.

    Article  CAS  Google Scholar 

  26. Bektas N, Agım BA, Kara S. Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite. J Hazard Mat. 2004;112:115–22.

    Article  CAS  Google Scholar 

  27. Juang RS, Lin SH, Tsao KH. Mechanism of sorption of phenols from aqueous solutions onto surfactant-modified montmorillonite. J Colloid Interface Sci. 2002;254:234–41.

    Article  CAS  Google Scholar 

  28. Alberga L, Holm T, Tiravanti G, Petruzzelli D. Electrochemical determination of cadmium sorption on kaolinite. Environ Technol. 1994;15:245–54.

    Article  CAS  Google Scholar 

  29. Tiller KG, Gerth J, Brümmer G. The sorption of Cd, Zn and Ni by soil clay fractions: procedures for partition of bound forms and their interpretation. Geoderma. 1984;34:1–16.

    Article  CAS  Google Scholar 

  30. Stadler M, Schindler PW. The effect of dissolved ligands upon the sorption of Cu(II) by Ca-montmorillonite. Clays Clay Miner. 1993;41:680–92.

    Article  CAS  Google Scholar 

  31. Belbachir M, Bensaoula A. US Patent 2001;No. 6, 274, 527 B1.

  32. Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D, Linares-Solano A. Porous texture of carbons. In: Beguin F, Frackowiak E, editors. Carbons for electrochemical energy storage and conversion systems. Florida: CRC Press; 2009. p. 115–62.

    Chapter  Google Scholar 

  33. Cazorla-Amorós D, Alcañiz-Monge J, Linares-Solano A. Characterization of activated carbon fibers by CO2 adsorption. Langmuir. 1996;12:2820–4.

    Article  Google Scholar 

  34. Cazorla-Amorós D, Alcañiz-Monge J, de la Casa-Lillo MA, Linares-Solano A. CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir. 1998;14:4589–96.

    Article  Google Scholar 

  35. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of different organic matter fractions on iron oxide. Geochim Cosmochim Acta. 1995;59:219–29.

    Article  CAS  Google Scholar 

  36. Kul AR, Koyunchu H. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J. Hazard Mater. 2010;179:332–9.

    Article  CAS  Google Scholar 

  37. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–65.

    Article  CAS  Google Scholar 

  38. Sing K, Everet D, Haul R, Moscou L, Pierotty R, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  39. Temuulin J, Jadambaa Ts, Burmaa G, Erdenechimeg Sh, Amarsanaa J, MacKenzie KJD. Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram Int. 2004;30:251–5.

    Article  Google Scholar 

  40. Noyan H, Onal M, Sarikaya Y. The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chem. 2007;105:156–63.

    Article  CAS  Google Scholar 

  41. Huang FC, Lee FJ, Lee CK, Chao HP. Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite. Colloid Surf A. 2004;239:41–7.

    Article  CAS  Google Scholar 

  42. Treybal RE. Mass-transfer operation, 3rd ed. Tokyo: McGraw-Hill; 1981.

    Google Scholar 

  43. Elliot HA, Huang CP. Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Res. 1981;15:849–55.

    Article  Google Scholar 

  44. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX. Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy. 2008;93:1–9.

    Article  CAS  Google Scholar 

  45. Volesky B, Holan ZR. Biosorption of heavy metals. Biotechnol Prog. 1995;11:235–50.

    Article  CAS  Google Scholar 

  46. Adebowale KO, Unuabonah IE, Olu-Owolabi BI. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mater. 2006;134:130–9.

    Article  CAS  Google Scholar 

  47. Jiang M, Jin X, Lu X, Chen Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010;252:33–9.

    Article  CAS  Google Scholar 

  48. Hefne JA, Mekhemer WK, Alandis NM, Aldayel OA, Alajyan T. Kinetic and thermodynamic study of the adsorption of Pb(II) from aqueous solution to the natural and treated bentonite. Int J Phys Sci. 2008;3:281–8.

    Google Scholar 

Download references

Acknowledgements

This study has been financed by the AECID (projects AECID-PCI A/019533/08 and A/023858/09) and Ministerio de Ciencia e Innovación (project MAT2010-15273). The National Agency for the Development of University Research (CRSTRA), the Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benyoucef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehhaf, A., Benyoucef, A., Berenguer, R. et al. Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. J Therm Anal Calorim 110, 1069–1077 (2012). https://doi.org/10.1007/s10973-011-2021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2021-8

Keywords

Navigation