Skip to main content
Log in

Synthesis of zinc oxide–montmorillonite composite and its effect on the removal of aqueous lead ions

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Lead adsorption of zinc oxide-coated ACOR montmorillonite was investigated in batches and under reducing conditions at ambient temperature. The presence of zinc oxide coating significantly enhanced the adsorption of Pb2+ ions by ACOR montmorillonite. Characterization of adsorbents involved the use of X-ray diffraction, sodium saturation techniques, coulter laser analysis, scanning electron microscopy, and electron dispersive spectroscopy. Synthesis involved the trimetric process, activation of the ACOR montmorillonite and reacting of the same with zinc nitrate to produce a zinc oxide composite solid at 450 °C. The reaction mechanism indicated less than one proton coefficient, and higher mass transfer rates, when compared with bare montmorillonite. Intraparticle diffusion was higher than the value recorded for the bare montmorillonite. Reactions based on initial Pb2+ concentration indicated that coated montmorillonite gradually became saturated as the concentration was increased. Reactions based on solid concentration demonstrated a complex change in the capacity of adsorption over different Pb2+ concentrations (10–40 mg L−1) and solid concentrations (2–10 g L−1). The specific surface area reduction, particle size increase, mineral aggregation, and concentration gradient effect controlled the complex changes in adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdullahi MS (2013) Toxic effects of lead in humans: an overview. Glob Adv Res J Environ Sci Toxicol 2(6):157–162

    Google Scholar 

  • Akpomie KG, Dawodu FA, Adebowale KO (2015) Mechanism on the sorption of heavy metals from binary solution by a low-cost montmorillonite and its desorption potential. Alex Eng J 54:757–767

    Article  Google Scholar 

  • Al-Farhan BS (2016) Removal of Cd2+ and Pb2+ ions from aqueous solutions using bentonite-modified magnetic nanoparticles. Int J Nano Chem 2:27–31

    Article  Google Scholar 

  • Allahdin O, Mabingui J, Warte M, Boughriet A (2017) Removal of Pb2+ ions from aqueous solutions by fixed-BED column using a modified brick: (micro)structural, electrokinetic and mechanistic aspects. Appl Clay Sci 148:56–67

    Article  Google Scholar 

  • Alves ME, Lavorenti A (2005) Point of zero salt effect: relationship with clay mineralogy of representative soils of Sao Paulo State, Brazil. Pedosphere 15:545–553

    Google Scholar 

  • Amiri MJ, Arshadi M, Giannakopoulos E, Kalavrouziotis IK (2018) Removal of mercury (II) and lead (II) from aqueous media by using a green adsorbent: kinetics, thermodynamic, and mechanism studies. J Hazard Toxic Radioact Waste 22:04017026

    Article  Google Scholar 

  • Arancibia-Miranda N, Baltazar SE, García A, Munoz-Lira D D, Sepúlveda P, Rubio MA, Altbir D (2016) Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380

    Article  Google Scholar 

  • Arshadi M, Soleymanzadeh M, Salvacion JWL, Salimi Vahid F (2014) Nanoscale zero-valent iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism. J Colloid Interface Sci 426:241–251

    Article  Google Scholar 

  • Blocher C, Dorda J, Mavrov V, Chmiel H, Lazaridis NK, Matis KA (2003) Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Res 37:4018–4026

    Article  Google Scholar 

  • Bolan NS, Syers JK, Tillman RW (1986) Ionic strength effects on surface charge and adsorption of phosphate and sulphate by soils. Eur J Soil Sci 37:379–388

    Article  Google Scholar 

  • Bonnet M-L, Costa D, Protopopoff E, Marcus P (2017) Theoretical study of the Pb adsorption on Ni, Cr, Fe surfaces and on Ni based alloys. Appl Surf Sci 426:788–795

    Article  Google Scholar 

  • Bouabidi ZB, El-Naas MH, Cortes D, McKay G (2018) Steel making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution. Chem Eng J 334:837–844

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Cataldo S, Gianguzza A, Pettignano A, Villaescusa I (2013a) Mercury(II) removal from aqueous solution by sorption onto alginate, pectate and polygalacturonate calcium gel beads: a kinetic and speciation-based equilibrium. React Funct Polym 73:207–217

    Article  Google Scholar 

  • Cataldo S, Gianguzza A, Pettignano A, Villaescusa I (2013b) Lead(II) removal from aqueous solution by sorption onto alginate, pectate and polygalacturonate calcium gel beads: a kinetic and speciation based equilibrium study. React Funct Polym 73:207–217

    Article  Google Scholar 

  • Chen Y-M, J-b Gao, Yuan Y-Q, Maa J, Yu S (2016) Relationship between heavy metal contents and clay mineral properties in surface sediments: implications for metal pollution assessment. Cont Shelf Res 124:125–133

    Article  Google Scholar 

  • Chen G, Shah KJ, Shia L, Chiang P-C (2017) Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms. Appl Surf Sci 409:296–305

    Article  Google Scholar 

  • Chen Y, Ho S-H, Wang D, Z-s Wei, Chang J-S, N-q Ren (2018) Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Biores Technol 247:463–470

    Article  Google Scholar 

  • Chiew CSC, Yeoh HK, Pasbakhsh P, Krishnaiah K, Poh PE, Tey BT, Chan ES (2016) Halloysite/alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption. Appl Clay Sci 119:301–310

    Article  Google Scholar 

  • Contescu C, Jagiello J, Schwarz JA (1993) Heterogeneity of proton binding sites at the oxide/solution interface. Langmuir 9:1754–1760

    Article  Google Scholar 

  • Crini GG (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  Google Scholar 

  • Dastoora AP, Larocpue Y (2004) Global circulation of atmospheric lead: a modeling study. Atmos Environ 38:147–161

    Article  Google Scholar 

  • Dhal B, Thatoir HN, Das NN, Paudey BD (2013) Chemical and microbial remediation. J Hazard Mater 250–251:272–292

    Article  Google Scholar 

  • Dunnette DA, Chynoweth DP, Mancy KH (1985) The source of hydrogen sulfide in anoxic sediment. Water Res I9(7):875–884

    Article  Google Scholar 

  • Dzombak DA, Morel F (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York, p 416

    Google Scholar 

  • Egirani DE, Wessey N (2015a) Effect of clay and goethite mineral systems on lead removal from aqueous solution: paper ii. Int J Multidiscip Acad Res 3:83–92

    Google Scholar 

  • Egirani DE, Wessey N (2015b) Effect of mineral systems on lead removal from aqueous solution: part I. Asian J Basic Appl Sci 2:61–73

    Google Scholar 

  • Egirani DE, Latif MT, Poyi NR, Wessey N, Acharjee S (2017a) Synthesis and characterization of kaolinite coated with copper oxide and its effect on the removal of aqueous mercury(ii) ions: part ii. Int Res J Chem Chem Sci 4:043–048

    Google Scholar 

  • Egirani DE, Latif MT, Poyi NR, Wessey N, Acharjee S (2017b) Synthesis and characterization of kaolinite coated with copper oxide and its effect on the removal of aqueous mercury(ii) ions: part i. Int Res J Chem Chem Sci 4:055–061

    Google Scholar 

  • Elouear Z, Bouzid J, Boujelben N, Jamoussi M, Feki F, Montiel A (2008) Heavy metal removal from aqueous solutions by activated phosphate rock. J Hazard Mater 156:412–420

    Article  Google Scholar 

  • Eren E (2009) Removal of heavy metal ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. J Hazard Mater 165:63–70

    Article  Google Scholar 

  • Eric B, Selma L, Ronald L (2010) Fishing activity, health characteristics and lead exposure of Amerindian women living alongside the Beni River (Amazonian Bolivia). Int J Hyg Environ Health 213:20–40

    Google Scholar 

  • Eze SO, Igwe JC, Dipo D (2013) Effect of particle size on adsorption of heavy metals using chemically modified and unmodified fluted pumpkin and broad-leafed pumpkin pods. Int J Biol Chem Sci 7:852–860

    Google Scholar 

  • Feng Q, Lin Q, Gong F, Sugita F, Shoya M (2004) Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci 278:1–8

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  Google Scholar 

  • Haydar S, Aziz JA (2009) Coagulation–flocculation studies of tannery wastewater using cationic polymers as a replacement of metal salts. J Hazard Mater 168:1035–1040

    Article  Google Scholar 

  • He J, Li Y, Wang C, Zhang K, Lin D, Kong L, Liu J (2017) Rapid adsorption of Pb, Cu and Cd from aqueous solutions by cyclodextrin polymers. Appl Surf Sci 426:29–39

    Article  Google Scholar 

  • Hom DP, Alley MM, Bertsch P (1982) Cation exchange capacity measurement. Commun Soil Sci Plant Anal 13:851–862

    Article  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nano-sized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Husein DZ (2013) Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalin Water Treat 51:6761–6769

    Article  Google Scholar 

  • Janaki RSG, Sreenivas K, Sivasamy R (2014) Hyperspectral analysis of clay minerals. Int Arch Photogramm Remote Sens Spat Inf Sci 40:443–446

    Article  Google Scholar 

  • Jha MK, Kumar VJ, Singh R (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33:1–22

    Article  Google Scholar 

  • Jiang R, Tian J, Zheng H, Qi J, Sun S, Li X (2015) A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution. J Environ Manage 155:24–30

    Article  Google Scholar 

  • Karickhoff SW, Bailey GW (1973) Optical absorption spectra of clay minerals. Clays Clay Miner 21:59–70

    Article  Google Scholar 

  • Khodadadi M, Malekpour A, Ansaritabar M (2017) Removal of Pb(II) and Cu (II) from aqueous solutions by NaA zeolite coated magnetic nanoparticles and optimization of method using experimental design. Microporous Mesoporous Mater 248:256–265

    Article  Google Scholar 

  • Kuncoro EP, Isnadina DRM, Darmokoesoemo H, Fauziah OR, Kusuma HS (2018) Characterization, kinetic, and isotherm data for adsorption of Pb2+from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data Brief 16:622–629

    Article  Google Scholar 

  • Liu Q, Li F, Lu H, Li M, Liu J, Zhang S, Sun Q, Xiong L (2018) Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem 242:256–263

    Article  Google Scholar 

  • Lopez-Mu-noz MJ, Aguado J, Arencibia A, Pascuala R (2011) Lead removal from aqueous solutions of PbCl2 by heterogeneous photo catalysis with TiO2. Appl Catal B 104:220–228

    Article  Google Scholar 

  • Lowell S, Shields JE (1991) Powder surface area and porosity. Springer, Netherlands, p 252

    Google Scholar 

  • Maity J, Ray SK (2018) Chitosan based nano composite adsorbent—Synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and Cd(II) from water. Carbohyd Polym 182:159–171

    Article  Google Scholar 

  • Maruthupandy M, Zuo Y, Chen J-S, Song J-M, Niu H-L, Mao C-J, Zhang S-Y, Shen Y-H (2017) Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications: the key laboratory of environment friendly. Appl Surf Sci 397:167–174

    Article  Google Scholar 

  • Ndabigengesere A, Narasiah KS (2010) Use of Moringa oleifera seeds as a primary coagulant in wastewater treatment. Environ Technol 19:789–800

    Article  Google Scholar 

  • Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Naidu R (2015) Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem Eng J 270:393–404

    Article  Google Scholar 

  • Olivaa J, De Pablo J, Cortina J-L, Cama J, Ayora C (2011) Removal of cadmium, copper, nickel, cobalt and lead from water by Apatite IITM: column experiments. J Hazard Mater 194:312–323

    Article  Google Scholar 

  • Phiwdang K, Suphankij S, Mekprasart W, Pecharap W (2013) Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Proced 34:740–745

    Article  Google Scholar 

  • Pirveysian M, Ghiaci M (2018) Synthesis and characterization of sulfur functionalized 502 grapheme oxide nanosheets as efficient sorbent for removal of Pb2+, Cd2+, Ni2+ and Zn2+ ions from aqueous solution: a combined thermodynamic and kinetic studies. Appl Surf Sci 428:98–109

    Article  Google Scholar 

  • Plescia P, Maccari D (1996) Recovering metals from red mud by thermal treatment and magnetic separation. J Miner Met Mater Soc 48:25–28

    Article  Google Scholar 

  • Qiu H, Lu LV, Bing-cai PAN, Qing-jian Z, Wei-ming Z, Quan-xing Z (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724

    Article  Google Scholar 

  • Ravichandran M (2004) Interactions between lead and dissolved organic matter—a review. Chemosphere 55:319–331

    Article  Google Scholar 

  • Rwiza MJ, Oh S-Y, Kim K-W, Kim SD (2018) Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania. Chemosphere 195:135–145

    Article  Google Scholar 

  • Seema KM, Mamba BB, Njuguna J, Bakhtizin RZ, Mishra AK (2018) Removal of lead (II) from aqueous waste using (CD-PCL-TiO2) bio-nanocomposites. Int J Biol Macromol 109:136–142

    Article  Google Scholar 

  • Shen Z, Zhang Y, McMillan Jin F, Al-Tabbaa O (2017) Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Sci Total Environ 609:1401–1410

    Article  Google Scholar 

  • Shen Z, Tian D, Zhang X, Tang L, Su M, Zhang L, Li Z, Hu S, Hou D (2018) Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution. Chemosphere 190:260–266

    Article  Google Scholar 

  • Shi Z-J, Guo Q, Xu Y-Q, Wu D, Liao S-M, Zhang F-Y, Zhang Z-Z, Jin R-C (2017) Mass transfer characteristics, rheological behavior and fractal dimension of anammox granules: the roles of upflow velocity and temperature. Biores Technol 244:117–124

    Article  Google Scholar 

  • Stephan B, McCarty KM, Nadine S, Beate L (2010) Lead exposure and children’s health. Curr Probl Pediatr Adolesc Health Care 40:186–215

    Article  Google Scholar 

  • Strange ED, Onwulata CI (2002) Effect of particle size on the water sorption properties of cereal fibers. J Food Qual 25:63–73

    Article  Google Scholar 

  • Taghipour T, Karimipour G, Ghaedi M, Asfaram A (2018) Mild synthesis of a Zn(II) metal organic polymer and its hybrid with activated carbon: application as antibacterial agent and in water treatment by using sonochemistry: optimization, kinetic and isotherm study. Ultrason Sonochem 41:389–396

    Article  Google Scholar 

  • Taraba B, Bulavová P (2018) Adsorption enthalpy of lead(II) and phenol on coals and activated carbon in the view of thermodynamic analysis and calorimetric measurements. J Chem Thermodyn 116:97–106

    Article  Google Scholar 

  • Tavares FO, Pinto LADM, Bassetti FDJ, Bergamasco R, Vieira AMS (2017) Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water. Environ Technol 38:3145–3155

    Article  Google Scholar 

  • Tipre DR, Dave SR (2004) Bioleaching process for Cu–Pb–Zn bulk concentrate at high pulp density. Hydrometallurgy 75:37–43

    Article  Google Scholar 

  • Tkacova K, Misura BM, Vigddergauz VE, Chanturiya VA (1993) Selective leaching of zinc from mechanically activated complex Cu–Pb–Zn concentrate. Hydrometallurgy 33:291–300

    Article  Google Scholar 

  • Tournassat C, Davis JA, Chiaberge C, Grangeon S, Bour IC (2016) Modeling the acid–base properties of montmorillonite edge surfaces. Environ Sci Technol 50:13436–13445

    Article  Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  Google Scholar 

  • van der Sloot HA (1991) Systematic leaching behavior of trace elements from construction materials and waste material. Stud Environ Sci 48:19–36

    Article  Google Scholar 

  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–334

    Article  Google Scholar 

  • Wang J, Zeng G, Huang D, Hu L, Xu P, Huang C, Deng R, Xue W, Lai C, Zhou C, Wang Y, Li L, Luo C, Wang X, Duan H (2018) Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. Int J Biol Macromol 86:505–511

    Article  Google Scholar 

  • Zaki AA, Ahmad MI, Abd El-Rahma KM (2017) Sorption characteristics of a landfill clay soil as a retardation barrier of some heavy metals. Appl Clay Sci 135:150–167

    Article  Google Scholar 

  • Zhang Y, Cao B, Zhao L, Sun L, Gao Y, Li Yang F (2018) Biochar-supported reduced graphene oxide composite for adsorption and co-adsorption of atrazine and lead ions. Appl Surf Sci 427:147–155

    Article  Google Scholar 

Download references

Acknowledgements

The authors remain grateful to the Niger Delta University for the usual research allowances provided for the running of research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davidson E. Egirani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egirani, D.E., Poyi, N.R. & Wessey, N. Synthesis of zinc oxide–montmorillonite composite and its effect on the removal of aqueous lead ions. Acta Geochim 38, 120–130 (2019). https://doi.org/10.1007/s11631-018-0285-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-018-0285-4

Keywords

Navigation