Skip to main content
Log in

Thermal degradation of pentaerythritol phosphate alcohol

TG and TG–MS studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Intumescent material, 2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane-4-methanol phosphate (PEPA), is synthesized and characterized using FTIR, 1HNMR and 13CNMR. The degradation properties of PEPA are studied by employing TG and TG–MS technique. The activation energies for the degradation process of PEPA are calculated by using TG curves obtained from multiple heating rates (Friedman, Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa methods). The degradation that is occurring in the temperature region 307–366 °C has the highest activation energy. Eventhough the calculated activation energies for the degradation differ depending on the approximation method employed, the trend in variation of activation energy for degradation is similar. Single ion monitoring technique proved the evolution of H2O, CO/C2H4, HCHO, C2H5OH/HCOOH and trace amounts of C2H7O3P and C4H9O4P from the degrading PEPA. The thermal conductivity and stability of the char formed during the TG analysis are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Omrane A, Wang YC, Göransson U, Holmstedt G, Aldén M. Intumescent coating surface temperature measurement in a cone calorimeter using laser-induced phosphorescence. Fire saf J. 2007;42:68–74.

    Article  CAS  Google Scholar 

  2. Wang D-Y, Liu Y, Wang Y-Z, Artiles C, Hull TR, Price D. Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polym Degrad Stab. 2007;92:1592–8.

    Article  CAS  Google Scholar 

  3. Jimenez M, Duquesne S, Bourbigot S. Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim Acta. 2006;449:16–26.

    Article  CAS  Google Scholar 

  4. Li G, Liang G, He T, Yang Q, Song X. Effects of EG and MoSi2 on thermal degradation of intumescent coating. Polym Degrad Stab. 2007;92:569–79.

    Article  CAS  Google Scholar 

  5. Balabanovich AI. Thermal decomposition study of intumescent additives: pentaerythritol phosphate and its blend with melamine phosphate. Thermochim Acta. 2005;435:188–96.

    Article  CAS  Google Scholar 

  6. Vijayakumar CT, David Mathan N, Sarasvathy V, Rajkumar T, Thamaraichelvan A, Ponraju D. Synthesis and thermal properties of spiro phosphorus compounds. J Therm Anal Calorim. 2010;101:281–7.

    Article  CAS  Google Scholar 

  7. Halpern Y, Mott DM, Niswander RH. Fire retardancy of thermoplastic materials by intumescence. Ind Eng Chem Prod Res Dev. 1984;23:233–8.

    Article  CAS  Google Scholar 

  8. Telschow JE, Tarrytown NY. (Pentaerythritol phosphate alcohol) (cyclic neopentylene clycol) phosphite and phosphonate. 1996; U.S. Patent: 5,536,863.

  9. Telschow JE, Tarrytown NY, Weil ED. Hastings-on-Hudson, Process for forming bis(pentaerythritol phosphate) carbonate. 1993; US Patent: 5,235,085.

  10. Parr WJ, Mack AG, Moy PYY, Plaines D. Bicyclic phosphate ether, ester, and carbonate intumescent flame retardant composition. 1989; US Patent: 4,801,625.

  11. Li X, Ou Y, Shi Y. Combustion behaviour and thermal degradation properties of epoxy resins with curing agent containing a caged bicyclic phosphate. Polym Degrad Stab. 2002;77:383–90.

    Article  CAS  Google Scholar 

  12. Gao F, Tong L, Fang Z. Effect of novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym Degrad Stab. 2006;91:1295–9.

    Article  CAS  Google Scholar 

  13. Song P, Fang Z, Tong L, Jin Y, Lu F. Effects of chelates on a novel oligomeric intumescent flame retardant system for polypropylene. J Anal Appl Pyroysis. 2008;82:286–91.

    Article  CAS  Google Scholar 

  14. Jimenez M, Duquesne S, Bourbigot S. Kinetic analysis of the thermal degradation of an epoxy-based intumescent coating. Polym Degrad Stab. 2009;94:404–9.

    Article  CAS  Google Scholar 

  15. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  16. Sivasamy P, Vijayakumar CT, Lederer K, Kramer A. A kinetic analysis of thermogravimetric data of radically polymerized N-phenylmaleimide. Thermochem Acta. 1992;208:283–91.

    Article  CAS  Google Scholar 

  17. Kandelbauer A, Wuzella G, Mahendran A, Taudes I, Widsten P. Model-free kinetic analysis of melamine–formaldehyde resin cure. Chem Eng J. 2009;152:555–65.

    Article  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  19. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  20. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A. 1966;70:487–9.

    Article  CAS  Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  22. Saranya V, Sivasamy P, David Mathan N, Rajkumar T, Ponraju D, Vijayakumar CT. Study of thermal properties of intumescent additive: pentaerythritol phosphate alcohol. J Therm Anal Calorim. 2010;102:1071–7.

    Article  Google Scholar 

  23. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  24. Hao W, Hu J, Chen L, Zhang J, Xing L, yang W. Isoconversional analysis of non-isothermal curing process of epoxy resin/epoxide polyhedral oligomeric silsesquioxane composites. Polym Test. 2011;30:349–55.

    Article  CAS  Google Scholar 

  25. Chrissafis K. Kinetics of thermal degradation of polymer. Complementary use of isoconversional and model-fitting method. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  26. Chen Y, Wang Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degard Stab. 2007;92:280–91.

    Article  CAS  Google Scholar 

  27. Levchik SV, Costa L, Camino G. Effect of fire-retardant, ammonium polyphosphate, on the thermal decomposition of aliphatic polyamiodes. I. Polyamides 11 and 12. Polym Degard Stab. 1992;36:31–41.

    Article  CAS  Google Scholar 

  28. Gersten J, Fainberg V, Hetsroni G, Shindler Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture. Fuel. 2000;79:1679–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors grateful to acknowledge the Principal and Managing Board of Kamaraj College of Engineering and Technology, K. Vellakulam Post—625701 India for their constant support and providing facilities to carry out this study successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnaswamy Thangavel Vijayakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathan, N.D., Arunjunairaj, M., Rajkumar, T. et al. Thermal degradation of pentaerythritol phosphate alcohol. J Therm Anal Calorim 110, 1133–1141 (2012). https://doi.org/10.1007/s10973-011-2015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2015-6

Keywords

Navigation