Skip to main content
Log in

Synthesis and thermal properties of spiro phosphorus compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Intumescent materials, 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5,5]-undecane-3,9-dioxide and 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5,5]-undecane having the capacity to produce dehydrating agent, blowing agent, and undergo carbonization during burning have been synthesized. The thermal behavior of the synthesized materials was investigated using differential thermal analysis, thermal volatilization analysis, programmed vacuum pyrolysis–mass spectrometry, flash pyrolysis–mass spectrometry and off-line pyrolysis–gas chromatography–mass spectrometry. The materials show exothermic degradation after 250 °C. Monitoring the release of hydrogen chloride and water, the blowing agents for the production of carbon foam, clearly indicated the superior performance of the pentavalent phosphorus compound over the trivalent phosphorus compound. The major gaseous degradation products released during pyrolysis showed the presence of sufficient quantities of several alkyl-substituted benzenes and fused aromatics. Suitable degradation mechanism has been proposed and discussed to explain the formation of various organics during thermal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atkinson PA, Haines PJ, Skinner GA, Lever TJ. Studies of fire retardant polyester thermosets using thermal methods. J Therm Anal Calorim. 2000;59:395–408.

    Article  CAS  Google Scholar 

  2. Sen AK, Kumar S. Coir-fiber-based fire retardant nanofiller for epoxy composites. J Therm Anal Calorim. 2009; doi:10.1007/s10973-009-0637-8.

  3. Troitzsch JH. Methods for the fire protection of plastics and coatings by flame retardant and intumescent system. Prog Org Coat. 1983;11:41–69.

    Article  CAS  Google Scholar 

  4. Fonseca VM, Fernandes VJ Jr, Araujo AS, Carvalho LH, Souza AG. Effect of halogenated flame retardant additives in the pyrolysis and thermal degradation of polyester/sisal composites. J Therm Anal Calorim. 2005;79:429–33.

    Article  CAS  Google Scholar 

  5. Lefebrre J, Bras ML, Bastin B, Paleja R, Delobel R. Flexible polyurethane foams: flammability. J Fire Sci. 2003;21:343–67.

    Article  Google Scholar 

  6. Howell BA. Thermal properties of compounds possessing both solid-phase and gas-phase flame retardant potential. J Therm Anal Calorim. 2007;89:373–7.

    Article  CAS  Google Scholar 

  7. Wu Q, Zhang C, Liang R. Combustion and thermal properties of epoxy/phenylsilanol polyhedral oligomeric silsesquioxane nanocomposites. J Therm Anal Calorim. 2009; doi:10.1007/s10973-009-0474-9.

  8. Chen Y, Wang Q. Preparation, properties and characterization of halogen free nitrogen–phosphorous flame retarded glass fiber reinforced polyamide 6 composite. Polym Degrad Stab. 2006;91:2003–13.

    Article  CAS  Google Scholar 

  9. Chen X, Hu Y, Jiao C, Song L. Thermal and uv-curing behaviour of phosphate diacrylate used for flame retardant coatings. Prog Org Coat. 2007;59:318–23.

    Article  CAS  Google Scholar 

  10. Dombrowski R. Flame retardants for textile coatings. J Ind Text. 1996;25:224–38.

    Article  CAS  Google Scholar 

  11. Laoutid F, Bannoud L, Alexandre M, Lopez-Cuesta J-M, Dubois Ph. New prospects in flame retardant polymer materials: from fundamentals to nanocomposite. Mater Sci Eng R. 2009;63:100–26.

    Article  Google Scholar 

  12. Jimenz M, Duquesne S, Bourbigot S. Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol. 2006;201:979–87.

    Article  Google Scholar 

  13. Mercado LA, Galià M, Reina JA. Silicon-containing flame retardants epoxy resins: synthesis, characterization and properties. Polym Degrad Stab. 2006;91:2588–94.

    Article  CAS  Google Scholar 

  14. Wang Z, Han E, Wei K. Effect of acrylic polymer and nano composite. Polym Degrad Stab. 2006;91:1937–47.

    Article  CAS  Google Scholar 

  15. Bhatnagar VM, David JC, Vergnaud JM, Rivers-Ravelo O, Dien H. Study of the combustion of a fire retardant coating by thermal analysis and different complementary technique. J Therm Anal Calorim. 1985;30:467–78.

    Article  CAS  Google Scholar 

  16. Duquesne S, Magnet F, Jama C, Delobel R. Intumescent paints: fire protective coatings for metallic substrate. Surf Coat Technol. 2004;180–181:302–7.

    Article  Google Scholar 

  17. Jimenz M, Duquesne S, Bourbigot S. Intumescent fire protective coatings: towards a better understanding of their mechanism of action. Thermochim Acta. 2006;449:16–26.

    Article  Google Scholar 

  18. Jincheng W, Yuehui C. Synthesis of an intumescent flame retardant (IFR) agent and application in a natural rubber (NR) system. J Elastomers Plast. 2007;39:33–51.

    Article  Google Scholar 

  19. Li Q, Jiang P, Wei P. Synthesis, characteristic, and application of new flame retardant containing phosphorous, nitrogen, and silicon. Polym Eng Sci. 2006;46:344–50.

    Article  CAS  Google Scholar 

  20. Ribeiro SPS, Estevão LRM, nascimento RSV. Brazilian clays as synergistic agents in an ethylenic polymer matrix containing an intumescent formulation. J Therm Anal Calorim. 2007;87:661–5.

    Article  CAS  Google Scholar 

  21. Ratz R, Sweeting OJ. Some chemical reactions of 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]undecane 3,9-dioxide. J Org Chem. 1963;28:1608–12.

    Article  Google Scholar 

  22. Ma H, Tong L, Xu ZB, Fang Z, Jin Y, Lu F. A novel intumescent flame retardant: synthesis and application in ABS. Polym Degrad Stab. 2007;92:720–6.

    Article  CAS  Google Scholar 

  23. Lucas HJ, Mitchell FW Jr, Scully CN. Cyclic phosphites of some aliphatic glycols. J Am Chem Soc. 1950;72:5491–6.

    Article  CAS  Google Scholar 

  24. Vijayakumar CT, Fink JK. Investigation on the mechanism of flame retardancy in HET acid containing unsaturate polyester resins. J Appl Polym Sci. 1982;27:1629–41.

    Article  CAS  Google Scholar 

  25. Vijayakumar CT. Investigations on the thermal degradation of polyesters, Doktor der montanistatischen wissenschaften dissertation. Montanuniversität Leoben, A-8700 Leoben, Austria; 1987.

  26. Vijayakumar CT, Lederer K, Kramer A. Structural aspects of polyimides I. Polymerization, degradation of endo-N-pnenylnadimide, endo-N-isobutylnadimide. J Polym Sci A. 1989;27:2723–48.

    Article  CAS  Google Scholar 

  27. Sivasamy P. Synthesis, characterization and thermal degradation studies of some polyesters. PhD thesis, Madurai Kamaraj University, Madurai, India; 1989.

  28. Vijayakumar CT, Sivasamy P, Geetha B, Fink JK. Structural basis for intumescence—study of model compound containing spiro phosphorous moiety and polymers containing such units. Macromol Symp. 2002;181:245–51.

    Article  CAS  Google Scholar 

  29. Camino G, Martinasso G, Costa L, Gobetto R. Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent system: Part II—intumescent step. Polym Degrad Stab. 1990;28:17–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam, India, under the project no. IGCAR/SG/RSD/RI/2007/KCE&T_1. The authors would like to thank the Principal and Managing Board of Kamaraj College of Engineering and Technology, K. Vellakulam Post 625701 and Thiagarajar College of Arts and Science (Autonomous), Madurai 625009, India for providing facilities to carry out this project successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnaswamy Thangavel Vijayakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayakumar, C.T., Mathan, N.D., Sarasvathy, V. et al. Synthesis and thermal properties of spiro phosphorus compounds. J Therm Anal Calorim 101, 281–287 (2010). https://doi.org/10.1007/s10973-010-0714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0714-z

Keywords

Navigation