Skip to main content
Log in

Formation of nanosize Li-ferrites from acetylacetonato complexes and their crystal structure, microstructure and order–disorder phase transition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanosize Li-ferrites were synthesised by the thermal decomposition of an appropriate mixture of complex compounds with acetylacetone - (2,4 pentadione) ligands ([M(AA)x]; M=Li and Fe) at 500 °C. The obtained sample is composed of three phases determined by the standard Rietveld procedure: Li0.5Fe2.5O4 (S.G. P4332), Li1.16Fe3O4 (S.G. Fd 3̄ m) and LiFeO2 (S.G. Fm 3̄ m). Cation distribution in nanosize ordered spinel Li0.5Fe2.5O4 deviates from that of the bulk counterpart. Microstructure parameters (crystallite size of ∼23 nm and strain of 3.2526(9)×103) were determined by the Rietveld refinement of the TCH-pV parameters. SEM microphotographs show a particle size of ∼50–60 nm. An order–disorder phase transition in ordered spinel Li0.5Fe2.5O4was studied by DSC measurements and in situ XRPD technique.The temperature of phase transition was found to be 762 °C (DSC) and (±) 7455°C.(XRPD)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Heer WA (2000) In: Wang ZL (ed) Characterization of Nanophase Materials. Wiley-VCH, Germany Chapt. 10

    Google Scholar 

  2. Caizer C (2002) Solid State Commun. 124:53

    Article  ADS  Google Scholar 

  3. Lipkin R (1995) Sci. News 22:245

    Google Scholar 

  4. Ozin GA (1992) Adv. Mater. 4:612

    Article  Google Scholar 

  5. Yang H, Wang Z, Song L, Zhao M, Wang J, Luo H (1996) J. Phys. D: Appl. Phys. 29:2574

    Article  ADS  Google Scholar 

  6. Huang C, Matijevic E (1996) Solid State Ionics 84:249

    Article  Google Scholar 

  7. Anwar A, Fujiwara T, Song S, Yoshimura M (2002) Solid State Ionics 151:419

    Article  Google Scholar 

  8. Nikolic AS, Cvetkovic N, Djuric S, Puzovic J, Pavlovic MB (1998) Mater. Sci. Forum 199:282

    Google Scholar 

  9. Antic B, Kremenovic A, Nikolic AS, Stoiljkovic M (2004) J. Phys. Chem. B 108:12646

    Article  Google Scholar 

  10. Hass C (1965) J. Phys. Chem. Solids 26:125

    Google Scholar 

  11. Tomas PA, Laruelle P (1983) Acta Cryst. C39:1615

    Google Scholar 

  12. Schieber M (1964) J. Inorg. Nucl. Chem. 26:1363

    Article  Google Scholar 

  13. Cheary RW, Grimes NW (1978) Acta Cryst. A34:74

    Google Scholar 

  14. Guillot M (1994) Magnetic Properties of Ferrites. In: Buschow KHJ (ed) Electronic and Magnetic Properties of Metals and Ceramics. VCH, Germany

    Google Scholar 

  15. Widatallah HM, Berry FJ (2002) J. Solid State Chem. 164:230

    Article  ADS  Google Scholar 

  16. de Picciotto LA, Thackeray MM (1986) Mater. Res. Bull. 21:583

    Article  Google Scholar 

  17. Pernet M, Strobel P, Bonnet B, Bordet P, Chabre Y (1993) Solid State Ionics 66:259

    Article  Google Scholar 

  18. Foncuperta J, Rodriguez J, Pernet M, Longworth G, Goodenough JB (1986) J. Appl. Phys. 69:1918

    Article  ADS  Google Scholar 

  19. M. Vucinic, B. Antic, J. Blanusa, A.S. Nikolic, S. Rakic, A. Kapor: Proceeding of X Conference of the Serbian Crystallographic Society, Abstract, Sokobanja, 7.–9.10.2002, p. 33

  20. Scharner S, Weppner W, Schmid-Beurmann P (1997) J. Solid State Chem. 134:170

    Article  Google Scholar 

  21. Inorganic Crystal Structure Database, July, 2002, National Institute of Standard and Technology, Gaithersburg, # 84971, #75525

  22. Prosini PP, Carewska M, Loreti S, Minarini C, Passerini S (2000) Int. J. Inorg. Mater. 2:365

    Article  Google Scholar 

  23. Barbenni V, Marini A, Matteazzi P, Ricceri R, Welham NJ (2003) J. Eur. Ceram. Soc. 23:527

    Article  Google Scholar 

  24. J. Rodriguez-Carvajal, FullProf computer program, 1998, ftp://charybde.saclay.cea.fr/pub/divers/fullprof.98/windows/winfp98.zip

  25. Louër D, Langford JI (1988) J. Appl. Crystallogr. 21:430

    Article  Google Scholar 

  26. Jovic N, Antic B, Kremenovic A, Spasojevic-de Bire A, Spasojevic V (2003) Phys. Stat. Solidi A 198:18

    Article  ADS  Google Scholar 

  27. Antic B, Rodic D, Nikolic AS, Kacarevic-Popovic Z, Karanoviæ L (2002) J. Alloys Compd. 336:286

    Article  Google Scholar 

  28. Brunel M, Bergevin F (1964) C.R. Acad. Sci. Paris 258:5628

    Google Scholar 

  29. Visnevskii II, Alapin BG, L’isak CV, Skripak VN (1968) Kristalografiya 9:1079

    Google Scholar 

  30. Kremenovic A, Antic B (2004) Phys. Lett. A 324:501

    Article  ADS  Google Scholar 

  31. Dobrzyński L, Przystawa J (1981) J. Phys. C: Solid State Phys. 14:5031

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Antic.

Additional information

PACS

81.07.Bc; 81.16.Be; 61.66.Fn; 61.50.Ks

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vucinic-Vasic, M., Antic, B., Blanusa, J. et al. Formation of nanosize Li-ferrites from acetylacetonato complexes and their crystal structure, microstructure and order–disorder phase transition. Appl. Phys. A 82, 49–54 (2006). https://doi.org/10.1007/s00339-005-3378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3378-y

Keywords

Navigation