Skip to main content

Advertisement

Log in

Effect of Size Fractionation on Purity, Thermal Stability and Electrical Properties of Natural Hematite

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study describes the variation of grain size of natural hematite (α-Fe2O3) from bulk to nano-scale, owing to fractionation by ball milling and also the change in vital electrical properties of the products with respect to their bulk counterpart. Hematite, an important iron ore, is present in abundance in the deposits of most parts of the world. This fact was the rationale behind the selection of this mineral for the study. A gradual decrease in size via top-down synthesis technique was confirmed and the morphological parameters of the materials were analyzed using field emission scanning electron microscopy (FESEM) and corresponding pore diameter and surface area were determined by BET-BJH analysis. The studies were performed on three size fractions, namely, S1 (bulk mineral), S2 (bulk mineral, ball milled for 3 h) and S3 (bulk mineral, ball milled for 12 h). The purities of the natural mineral and its fractionated end products were estimated by using x-ray diffraction (XRD) and x-ray fluorescence (XRF) techniques. Increase in purity with decline in the particle size, especially in the nano-domain, was observed. The changes in dielectric properties of the materials with varying temperature were studied. Temperature dependence of the dielectric constant and ac conductivity were recorded, which indicated a remarkable augmentation in dielectric permittivity with reduction in size of the material. High dielectric constants of the smaller sized materials (S2 and S3) at low frequency signified their potential use in energy storage devices. Thus, using an easily available natural mineral as the starting material, an efficient energy storage appliance can be devised with a low-cost substance, synthesized by the simple approach of fractionation without employing any chemicals.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Lundström and S. Svensson, Curr. Appl. Phys. 2, 17 (2002).

    Article  Google Scholar 

  2. N.A. Hoque, P. Thakur, P. Biswas, M.M. Saikh, S. Roy, B. Bagchi, S. Das, and P.P. Ray, J. Mater. Chem. A 6, 13848 (2018).

    Article  CAS  Google Scholar 

  3. G. Wei, Y.U. Shouwen, and H. Ganyun, Nanotechnology 17, 1118 (2006).

    Article  CAS  Google Scholar 

  4. Z.L. Wang and W. Wu Angew, Chem. Int. 51, 11700 (2012).

    Article  CAS  Google Scholar 

  5. K.A. Homan, J. Shah, S. Gomez, H. Gensler, A.B. Karpiouk, L. Brannon-Peppas, and S.Y. Emelianov, J. Biomed Opt. 15, 021316 (2010).

    Article  CAS  Google Scholar 

  6. A. Bala and T. Nautiyal, J. Magn. Magn. Mater. 320, 2201 (2008).

    Article  CAS  Google Scholar 

  7. A.V. Anupama, W. Keune, and B. Sahoo, J. Magn. Magn. Mater. 439, 156 (2017).

    Article  CAS  Google Scholar 

  8. Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, and Y. Kuang, Diam. Relat. Mater. 15, 1478 (2006).

    Article  CAS  Google Scholar 

  9. Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, and Z.L. Wang, AngewChem. Int. 52, 5065 (2013).

    Article  CAS  Google Scholar 

  10. A. Balducci, S.S. Jeong, G.T. Kim, S. Passerini, M. Winter, M. Schmuck, G.B. Appetecchi, R. Marcilla, D. Mecerreyes, V. Barsukov, V. Khomenko, I. Cantero, I. De Meatza, M. Holzapfel, and N. Tran, J. Power Sources 196, 9719 (2011).

    Article  CAS  Google Scholar 

  11. M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, and Z.L. Wang, Nano Lett. 9, 1223 (2009).

    Article  CAS  Google Scholar 

  12. S. Vives, E. Gaffet, and C. Meunier, Mater. Sci. Eng. A 366, 229 (2004).

    Article  CAS  Google Scholar 

  13. A.E. Mahmoud, H.S. Wasly, and M.A. Doheim, J. Eng. Sci. 42, 1430 (2014).

    Google Scholar 

  14. M. Ujihara, G.P. Carman, and D.G. Lee, Appl. Phys. Lett. 91, 093508 (2007).

    Article  CAS  Google Scholar 

  15. E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, J. Intell. Mater. Syst. Struct. 16, 865 (2005).

    Article  Google Scholar 

  16. W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, and T. Jing, ACS Nano 6, 6231 (2012).

    Article  CAS  Google Scholar 

  17. C.H. Ng, H.N. Lim, Y.S. Lim, W.K. Chee, and N.M. Huang, Int. J. Energy Res. 39, 344 (2015).

    Article  CAS  Google Scholar 

  18. C.M. Eggleston, Science 320, 184 (2008).

    Article  CAS  Google Scholar 

  19. P. Robinson, R.J. Harrison, S.A. McEnroe, and R.B. Hargraves, Am. Min. 89, 725 (2004).

    Article  CAS  Google Scholar 

  20. S.K. Boda, B. Basu, and B. Sahoo, J. Phys. Chem. C 119, 6539 (2015).

    Article  CAS  Google Scholar 

  21. T.P. Raming, A.J. Winnubst, C.M. van Kats, and A.P. Philipse, J. Colloid Interface Sci. 249, 346 (2002).

    Article  CAS  Google Scholar 

  22. H. Nagar, N.V. Kulkarni, S. Karmakar, B. Sahoo, I. Banerjee, P.S. Chaudhari, R. Pasricha, A.K. Das, S.V. Bhoraskar, S.K. Date, and W. Keune, Mater. Charact. 59, 1215 (2008).

    Article  CAS  Google Scholar 

  23. J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, and W. Zheng, ACS Nano 3, 3749 (2009).

    Article  CAS  Google Scholar 

  24. M. Manjunatha, R. Kumar, A.V. Anupama, V.B. Khopkar, R. Damle, K.P. Rameshand, and B. Sahoo, J. Mater. Res. Technol. 8, 2192 (2019).

    Article  CAS  Google Scholar 

  25. X. Zhang and Q. Li, Mater. Lett. 62, 988 (2008).

    Article  CAS  Google Scholar 

  26. A.B. Rodriguez-Navarro, J. Appl. Crystallogr. 39, 905 (2006).

    Article  CAS  Google Scholar 

  27. A.A. Bunaciu, E.G. UdriŞTioiu, and H.Y. Aboul-Enein, Crit. Rev. Anal. Chem. 45, 289 (2015).

    Article  CAS  Google Scholar 

  28. A. Chauhan and P. Chauhan, J. Anal. Bioanal. Tech. 5, 1 (2014).

    Google Scholar 

  29. J.D. Hanawalt, H.W. Rinn, and L.K. Frevel, Ind. Eng. Chem. Anal. Ed. 10, 457 (1938).

    Article  CAS  Google Scholar 

  30. C.E. Kril and R. Birringer, Philos. Mag. A 77, 621 (1998).

    Article  Google Scholar 

  31. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., (Hoboken: Wiley-VCH, 1974), p. 992.

    Google Scholar 

  32. J.S.J. Hargreaves, Catal. Struct. React. 2, 33 (2016).

    Article  CAS  Google Scholar 

  33. H. Chen, Y. Chen, J. Yu, and J.S. Williams, Chem. Phys. Lett. 425, 315 (2006).

    Article  CAS  Google Scholar 

  34. S. Singh, M.U. Aswath, R.D. Biswas, R.V. Ranganath, H.K. Choudhary, R. Kumar, and B. Sahoo, Case Stud. Constr. Mater. 11, e00266 (2019).

    Google Scholar 

  35. E. Darezereshki, Mater. Lett. 65, 642 (2011).

    Article  CAS  Google Scholar 

  36. G. Ramis, G. Busca, and V. Lorenzelli, Mater. Chem. Phys. 29, 425 (1991).

    Article  CAS  Google Scholar 

  37. W. Brostow and T. Datashvili, Chem. Chem. Technol. 2, 27 (2008).

    Article  Google Scholar 

  38. J. Bhaskar Saikia, G. Parthasarathy, R.R. Borah, and R. Borthakur, Int. J. Earth Sci. 7, 873 (2016).

    Google Scholar 

  39. V.C. Farmer, Mineralogical Society (1974)

  40. B.J. Saikia, G. Parthasarathy, and N.C. Sarmah, Nat. Sci. 7, 45 (2009).

    Google Scholar 

  41. B.J. Saikia, G. Parthasarathy, N.C. Sarmah, and G.D. Baruah, Bull. Mater. Sci. 31, 155 (2008).

    Article  CAS  Google Scholar 

  42. Z.L.L. Yeung, R.C.W. Kwok, and K.N. Yu, Appl. Radiat. Isot. 58, 339 (2003).

    Article  CAS  Google Scholar 

  43. S. Roy, A. Maity, P. Mandal, D.K. Chanda, K. Pal, S. Bardhan, and S. Das, Cryst. Eng. Commun. 20, 6338 (2018).

    Article  CAS  Google Scholar 

  44. D.K. Chanda, P.S. Das, A. Samanta, A. Dey, A.K. Mandal, K.D. Gupta, T. Maitya, and A.K. Mukhopadhyay, Ceram. Int. 40, 11411 (2014).

    Article  CAS  Google Scholar 

  45. D.K. Chanda, A. Samanta, A. Dey, P.S. Das, and A.K. Mukhopadhyay, J. Mater. Sci 52, 4910 (2017).

    Article  CAS  Google Scholar 

  46. S. Roy, S. Bardhan, K. Pal, S. Ghosh, P. Mandal, S. Das, and S. Das, J. Alloys Compd. 763, 749 (2018).

    Article  CAS  Google Scholar 

  47. S. Roy, S. Bardhan, D.K. Chanda, A. Maity, S. Ghosh, D. Mondal, S. Singh, and S. Das, Mater. Res. Express 7, 025020 (2020).

    Article  CAS  Google Scholar 

  48. S. Das, S. Das, A. Roychowdhury, D. Das, and S. Sutradhar, J. Alloys Compd. 708, 231 (2017).

    Article  CAS  Google Scholar 

  49. S. Bardhan, S. Roy, D.K. Chanda, S. Das, K. Pal, A. Chakraborty, R. Basu, and S. Das, Cryst. Growth Des. 19, 4588 (2019).

    Article  CAS  Google Scholar 

  50. D. Chuprinko and K. Titov, Geophys. J. Int. 209, 186 (2017).

    Article  CAS  Google Scholar 

  51. C.G. Koops, Phys. Rev. 83, 121 (1951).

    Article  CAS  Google Scholar 

  52. S. Ganguly, K. Halder, N. Haque, S. Das, and S. Dastidar, Am. J. Res. Commun. 3, 68 (2015).

    Google Scholar 

  53. P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, and P. Nandy, RSC Adv. 5, 62819 (2015).

    Article  CAS  Google Scholar 

  54. A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981).

    Article  CAS  Google Scholar 

  55. L.K. Sudha, S. Roy, and K.U. Rao, Int. J. Mater. Mech. Manuf. 2, 96 (2014).

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Department of Physics, Jadavpur University, for extending experimental facilities. S.D. would like to acknowledge DST-SERB (Grant No. EEQ/2018/000747) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhen Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Roy, S., Bardhan, S. et al. Effect of Size Fractionation on Purity, Thermal Stability and Electrical Properties of Natural Hematite. J. Electron. Mater. 50, 3836–3845 (2021). https://doi.org/10.1007/s11664-021-08878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08878-9

Keywords

Navigation