Skip to main content
Log in

A study of thermal crystallization in glassy Se80Te20 and Se80In20 using DSC technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Different methods have been used by various workers to determine the activation energy of thermal crystallization (Ec) in chalcogenide glasses using non-isothermal DSC data. In the present work, the crystallization kinetics of two important binary alloys Se80Te20 and Se80In20 is studied using non-isothermal DSC data. DSC scans of these alloys have been taken at five different heating rates. The values of activation energy of crystallization (Ec) have been determined by four different methods, i.e., Kissinger's method, Matusita-Sakka method, Augis-Bennett's method and Ozawa's method, have been used to calculate Ec. The results obtained have been compared with each other to see the effect of using different methods in the determination of Ec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AB Seddon (1995) J. Non-Cryst. Sol. 184 44 Occurrence Handle10.1016/0022-3093(94)00686-5 Occurrence Handle1:CAS:528:DyaK2MXlsFGhurk%3D

    Article  CAS  Google Scholar 

  2. M Nakamura Y Wang O Matsuda K Inoue K Murase (1996) J. Non-Cryst. Sol. 198-200 740 Occurrence Handle10.1016/0022-3093(96)00127-5 Occurrence Handle1:CAS:528:DyaK28XktVSisro%3D

    Article  CAS  Google Scholar 

  3. L Men F Jiang F Gan (1997) Mater. Sci. Eng. B 47 18. Occurrence Handle10.1016/S0921-5107(97)02042-4

    Article  Google Scholar 

  4. RV Woudenberg (1998) Jpn. J. Appl. Phys. 37 2159

    Google Scholar 

  5. GF Zhou (2001) Mater. Sci. Eng. A 304 73

    Google Scholar 

  6. AM Andriesh MS Iovu SD Shutov (2002) J. Optoelectron. Adv. Mater. 4 631 Occurrence Handle1:CAS:528:DC%2BD38XmvFSrtro%3D

    CAS  Google Scholar 

  7. AV Kolobov J Tominaga (2002) J. Optoelectron. Adv. Mater. 4 679 Occurrence Handle1:CAS:528:DC%2BD38XmvFSrtrg%3D

    CAS  Google Scholar 

  8. MHR Lankhorst (2002) J. Non-Cryst. Sol. 297 210 Occurrence Handle10.1016/S0022-3093(01)01034-1 Occurrence Handle1:CAS:528:DC%2BD38XhtVSru7s%3D

    Article  CAS  Google Scholar 

  9. T Ohta (2001) J. Optoelectron. Adv. Mater. 3 609 Occurrence Handle1:CAS:528:DC%2BD3MXns1yms74%3D

    CAS  Google Scholar 

  10. Tz Babeva D Dimitrov S Kitova I Konstantinov (2000) Vacuum 58 496 Occurrence Handle10.1016/S0042-207X(00)00211-6 Occurrence Handle1:CAS:528:DC%2BD3cXmsVWnsL8%3D

    Article  CAS  Google Scholar 

  11. VI Mikla IP Mikhalko VV Mikla (2001 ) Mater. Sci. Eng. B 83 74 Occurrence Handle10.1016/S0921-5107(00)00803-5

    Article  Google Scholar 

  12. SA Khan M Zulfequar M Husain (2003) Vacuum 72 291 Occurrence Handle10.1016/j.vacuum.2003.08.006 Occurrence Handle1:CAS:528:DC%2BD3sXosFSnsbk%3D

    Article  CAS  Google Scholar 

  13. K Sakai K Maeda H Yokoyama T Ikari (2003) J. Non-Cryst. Sol. 320 223 Occurrence Handle10.1016/S0022-3093(03)00020-6 Occurrence Handle1:CAS:528:DC%2BD3sXivVOrtLk%3D

    Article  CAS  Google Scholar 

  14. A Zakery SR Elliott (2003) J. Non-Cryst. Sol. 330 1 Occurrence Handle10.1016/j.jnoncrysol.2003.08.064 Occurrence Handle1:CAS:528:DC%2BD3sXos1aguro%3D

    Article  CAS  Google Scholar 

  15. SSK Titus S Asokan ESR Gopal ( 1992) Solid State Commun. 83 745 Occurrence Handle10.1016/0038-1098(92)90156-4

    Article  Google Scholar 

  16. N Rysava T Spasov L Tichy (1987 ) J. Thermal Anal. 32 1015 Occurrence Handle1:CAS:528:DyaL1cXhtVCisLo%3D

    CAS  Google Scholar 

  17. A Giridhar S Mahadevan (1982) J. Non-Cryst. Sol. 51 305 Occurrence Handle10.1016/0022-3093(82)90151-X Occurrence Handle1:CAS:528:DyaL3sXis1Sgug%3D%3D

    Article  CAS  Google Scholar 

  18. N Afify (1991) J. Non-Cryst. Sol. 128 279 Occurrence Handle1:CAS:528:DyaK3MXks1WitLw%3D

    CAS  Google Scholar 

  19. MJ Strink AM Zahra (1997) Thermochim. Acta 298 179

    Google Scholar 

  20. MM Wakkad (2001) J. Therm. Anal. Cal. 63 533 Occurrence Handle1:CAS:528:DC%2BD3MXisFWis7w%3D

    CAS  Google Scholar 

  21. M Abu El-Oyoun (2000) J. Phys. Chem. Sol. 61 1653 Occurrence Handle10.1016/S0022-3697(00)00027-5 Occurrence Handle1:CAS:528:DC%2BD3cXktlOjtbg%3D

    Article  CAS  Google Scholar 

  22. MMA Imran D Bhandari NS Saxena (2001) J. Therm. Anal. Cal. 65 257 Occurrence Handle10.1023/A:1011557425244 Occurrence Handle1:CAS:528:DC%2BD3MXmsFKisb0%3D

    Article  CAS  Google Scholar 

  23. N Mehta D Kumar A Kumar (2004) Turkish J. Phys. 28 397 Occurrence Handle1:CAS:528:DC%2BD2MXptVaqsA%3D%3D

    CAS  Google Scholar 

  24. N Mehta M Zulfequar A Kumar (2004 ) J. Optoelectron. Adv. Mater. 6 441 Occurrence Handle1:CAS:528:DC%2BD2cXlvFCgsrY%3D

    CAS  Google Scholar 

  25. HE Kissinger (1957) Anal. Chem. 29 1702 Occurrence Handle10.1021/ac60131a045 Occurrence Handle1:CAS:528:DyaG1cXivVequw%3D%3D

    Article  CAS  Google Scholar 

  26. K Matusita S Sakka (1979) Phys. Chem. Glasses 20 81 Occurrence Handle1:CAS:528:DyaL3cXltFyqtr0%3D

    CAS  Google Scholar 

  27. K Matusita S Sakka (1981) Bull. Inst. Chem. Res., Kyoto Univ. 59 159 Occurrence Handle1:CAS:528:DyaL3MXlvFGgsr8%3D

    CAS  Google Scholar 

  28. JA Augis JE Bennett (1978) J. Thermal Anal. 13 283 Occurrence Handle10.1007/BF01912301 Occurrence Handle1:CAS:528:DyaE1cXktlWnu7c%3D

    Article  CAS  Google Scholar 

  29. T Ozawa (1956) Bull. Chem. Soc. (Jpn.) 35 1881

    Google Scholar 

  30. WA Johnson RF Mehl (1939) Trans. Am. Inst. Min. (Metal) Engs. 135 416

    Google Scholar 

  31. M Avrami (1939) J. Phys. Chem. 7 1103 Occurrence Handle1:CAS:528:DyaH3cXns1Or

    CAS  Google Scholar 

  32. M Avrami (1940) J. Phys. Chem. 8 212 Occurrence Handle1:CAS:528:DyaH3cXpvVWg

    CAS  Google Scholar 

  33. T Ozawa (1970) J. Thermal Anal. 2 301 Occurrence Handle10.1007/BF01911411 Occurrence Handle1:CAS:528:DyaE3MXmvVaisw%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar A .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, N., Kumar, A. A study of thermal crystallization in glassy Se80Te20 and Se80In20 using DSC technique . J Therm Anal Calorim 83, 401–405 (2006). https://doi.org/10.1007/s10973-004-6342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-004-6342-8

Keywords

Navigation