Skip to main content
Log in

On the kinetics of pozzolanic reaction in metakaolin–lime–water system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of pozzolanic reaction metakaolin–lime is studied in the present work. Metakaolin is prepared by calcination of enriched kaolin (deposit “Senovo”, Bulgaria) at temperature of 830 ± 10 °C in a labscale muffle oven. The reaction is performed in intensively stirred water suspension at different temperatures in the range 20–100 °C. The kinetics is analyzed by comparing the experimental data with theoretical curves, derived according to appropriate kinetic and diffusion models taking into account the grain size distribution of metakaolin. The macroscopic mechanism and activation energy of the reaction are determined. It is found, that the activation energy decreases gradually from 71 to 45 kJ/mol[Ca(OH)2] with the increase of the reaction degree from 0.2 up to 0.6, respectively, which is a characteristic for transition regime reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43:392–400.

    Article  CAS  Google Scholar 

  2. Cabrera J, Rojas MF. Mechanism of hydration of the metakaolin–lime–water system. Cem Concr Res. 2001;31:177–82.

    Article  CAS  Google Scholar 

  3. Sanches de Rojas MI, Cabrera J. The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems. Cem Concr Res. 2002;32:133–8.

    Article  Google Scholar 

  4. Shi C, Day RL. Pozzolanic reaction in the presence of chemical activators. Part I. Reaction kinetics. Cem Concr Res. 2000;30:51–8.

    Article  CAS  Google Scholar 

  5. Moropoulou A, Bakolas A, Aggelakopoulou E. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta. 2004;420:135–40.

    Article  CAS  Google Scholar 

  6. Wild S, Knatib JM. Portlandite consumption in metakaolin cement pastes and mortars. Cem Concr Res. 1997;27(1):137–46.

    Article  CAS  Google Scholar 

  7. Oriol M, Pera J. Pozzolanic activity of metakaolin under microwave treatment. Cem Concr Res. 1995;25(2):265–70.

    Article  CAS  Google Scholar 

  8. Ninov J, Donchev I, Dimova L. On the kinetics of pozzolanic reaction in the system kaolin–lime–water. J Therm Anal Calorim. 2010;101:107–12.

    Article  CAS  Google Scholar 

  9. USA Patent No 5792251—Method of producing metakaolin/Aug. 11. 1998:13.

  10. Brindley GW, Nakahara M. The kaolinite–mullite reaction series: metakaolin. J Am Cer Soc. 1959;42(7):314–8.

    Article  CAS  Google Scholar 

  11. Ninov J, Donchev I. Lime stabilization of clay from the “Mirkovo” deposit. (I) Kinetics and mechanism of the processes. J Therm Anal Calorim. 2008;91(2):487–90.

    Article  CAS  Google Scholar 

  12. Berg LG. Introduction in thermography. 1st ed. Moscow: Publishing House of the Academy of Sciences of the USSR; 1961. p. 193–5.

    Google Scholar 

  13. Ambroise J, Murat M, Pera J. Hydratation reaction and hardening of calcined clays and related minerals. V. Extentsion of the research and general conclusions. Cem Concr Res. 1985;2:261–8.

    Article  Google Scholar 

  14. Kurtis KE, Metakaolin. CEE 8813. Mater Sci Concr. 2007, p. 7. http://people.ce.gatech.edu/~kk92/mkgrad.pdf.

  15. Largent G. Estimation de l’activite pouzzlanique. Bull Liaison Lab P et Ch. Ref 2143, janv-fevr 1978;93:61–65.

    Google Scholar 

  16. Bai J, Wild S. Investigation of the temperature change and heat evolution of mortar incorporating PFA and metakaolin. Cem Concr Compos. 2002;24(2):201–9.

    Article  CAS  Google Scholar 

  17. Tretjakov Ju. Solid-phase reactions. 1st ed. Moskow: Chimia; 1978. p. 174–88.

    Google Scholar 

  18. Frias M, Villar-Cociña E, Rojas M, Valencia-Morales E. The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: application of a kinetic-diffusive model. Cem Concr Res. 2005;35:2137–42.

    Article  CAS  Google Scholar 

  19. Villar-Cociña E, Valencia-Morales E, Gonzales-Rodriguez R, Hernandez-Ruiz J. Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: a kinetic-diffusive model. Cem Concr Res. 2003;33:517–24.

    Article  Google Scholar 

  20. Delmon B. Kinetics of heterogenous rections. Moskow: Mir; 1972.

    Google Scholar 

  21. Kapur PC. Kinetics of solid-state reactions of particulate ensembles with size distributions. J Am Cer Soc. 1972;56(2):79–81.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by PROJECT 189/2009 from the Scientific Research Fund of the Sofia University “St. Kliment Ohridski”. The authors are grateful to Prof. DSc. Al. Lenchev, Faculty of Chemistry, Sofia University “St. Kliment Ohridski”, for the useful discussion about the processing and presentation of kinetics data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ninov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ninov, J., Doykov, I., Dimova, L. et al. On the kinetics of pozzolanic reaction in metakaolin–lime–water system. J Therm Anal Calorim 105, 245–250 (2011). https://doi.org/10.1007/s10973-011-1419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1419-7

Keywords

Navigation