Skip to main content
Log in

Effects of long-chain alcohols on the micellar properties of anionic surfactants in non-aqueous solutions by titration microcalorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The power–time curves of micellar formation of two anionic surfactants, sodium laurate (SLA) and sodium dodecyl sulfate (SDS), in N,N-dimethyl acetamide (DMA) in the presence of various long-chain alcohols (1-heptanol, 1-octanol, 1-nonanol and 1-decanol) were measured by titration microcalorimetry at 298 K. The critical micelle concentrations (CMCs) of SLA and SDS under various conditions at 298 K were obtained based on the power–time curves. Thermodynamic parameters (\( \Updelta H^\circ_{\text{mic}} \), \( \Updelta S^\circ_{\text{mic}} \) and \( \Updelta G^\circ_{\text{mic}} \)) for micellar systems at 298 K were evaluated according to the power–time curves and the mass action model. The influences of the number of carbon-atom and the concentration of alcohol were investigated. Moreover, combined the thermodynamic parameters at 303, 308 and 313 K in our previous work and those of 298 K in the present work for SLA and SDS in DMA in the presence of long-chain alcohols, an enthalpy–entropy compensation effect was observed. The values of the enthalpy of micellization calculated by direct and indirect methods were made a comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baglioni P, Kevan L. Structural effects of alcohol addition to sodium dodecyl sulfate micelles studied by electron spin-echo modulation of 5-doxylstearic acid spin probe. J Phys Chem. 1987;91:1516–8.

    Article  CAS  Google Scholar 

  2. Bravo C, Leis JR, Pena ME. Effect of alcohols on catalysis by dodecyl sulfate micelles. J Phys Chem. 1992;96:1957–61.

    Article  CAS  Google Scholar 

  3. Forland GM, Sameth J, Hoiland H, Mortensen K. The effect of medium chain length alcohols on the micellar properties of sodium dodecyl sulfate in sodium chloride solutions. J Colloid Interface Sci. 1994;164:163–7.

    Article  Google Scholar 

  4. Pablo ML, Juan MR, Gerardo P, Félix S. Surface tensions, critical micelle concentrations, and standard free energies of micellization of C8−lecithin at different pHs and electrolyte concentrations. J Chem Eng Data. 2002;47:1017–21.

    Article  Google Scholar 

  5. Yogesh R, Sunil SB. CMC determination of an odd carbon chain surfactant (C13E20) mixed with other surfactants using a spectrophotometric technique. J Chem Eng Data. 2006;51:2026–31.

    Article  Google Scholar 

  6. Akhter MS, Al-Alawi SM. The effect of organic additives on critical micelle concentration of non-aqueous micellar solutions. Colloids Surf A. 2000;175:311–20.

    Article  CAS  Google Scholar 

  7. Evans DF, Miller DD. In: Friberg SE, Lindman B, editors. Organized solutions. New York: Marcel Dekker; 1992.

    Google Scholar 

  8. Chen D, Zhu JX, Yuan P, Yang SJ, Chen TH, He HP. Preparation and characterization of anion-cation surfactants modified montmorillonite. J Therm Anal Calorim. 2008;94:841–8.

    Article  CAS  Google Scholar 

  9. Galán JJ, Del Castillo JL, González-Pérez A, Fuentes-Vázquez V, Rodríguez JR. Solubilization of butanol/pentanol/hexanol in dodecylpyridinium chloride. J Therm Anal Calorim. 2007;87:159–63.

    Article  Google Scholar 

  10. González-Pérez A, Galán JJ, Rodríguez JR. The solubilization of alcohols in micellar solutions. J Therm Anal Calorim. 2003;72:471–9.

    Google Scholar 

  11. Sjoberg M, Henriksson U, Warnheim T. Deuteron nuclear magnetic relaxation of [1,1-2H] hexadecyltrimethylammonium bromide in micellar solutions of nonaqueous polar solvents and their mixtures with water. Langmuir. 1990;6:1205–11.

    Article  Google Scholar 

  12. Beesley AH, Evans DF, Laughlin RG. Evidence for the essential role of hydrogen bonding in promoting amphiphilic self-assembly: measurements in 3-methylsydnone. J Phys Chem. 1988;92:791–3.

    Article  CAS  Google Scholar 

  13. Honglin Z, Xiufang Y, Xiangyang L, Haitao S, Yi N, Lili W, et al. Microcalorimetric study of the oscillating extraction system. J Therm Anal Calorim. 2002;68:931–6.

    Article  CAS  Google Scholar 

  14. Gucker FT, Pickard HB, Planck RW. A new micro-calorimeter: the heats of dilution of aqueous solutions of sucrose at 20 and 30° and their heat capacities at 25°. J Am Chem Soc. 1939;61:459–70.

    Article  CAS  Google Scholar 

  15. Paula S, Süs W, Tuchtenhagen J, Blume A. Thermodynamics of micelle formation as a function of temperature: a high sensitivity titration calorimetry study. J Phys Chem. 1995;99:11742–51.

    Article  CAS  Google Scholar 

  16. Dai S, Tam KC. Isothermal titration calorimetric studies of alkyl phenol ethoxylate surfactants in aqueous solutions. Colloids Surf A. 2003;229:157–68.

    Article  CAS  Google Scholar 

  17. Yu XF, Wu LL, Zhang HL. Microcalorimetric study on the formation of reversed micelle in P204Li organic phase. Chin J Appl Chem. 2002;3:263–7.

    Google Scholar 

  18. Ralston AW, Eggenberger DW. The effect of organic non-electrolytes upon the conductivities of aqueous solutions of cationic colloidal electrolytes. J Am Chem Soc. 1948;70:983–7.

    Article  CAS  Google Scholar 

  19. Li GZ, Lin Y, Guo R, Wang GT. High resolution NMR studies of the solubilised process of micellar solution. Acta Phys Chim Sin. 1986;2:183–9.

    CAS  Google Scholar 

  20. Philips JN. The energetic of micelle formation. Trans Faraday Soc. 1955;51:561−9.

    Article  Google Scholar 

  21. Kresheck GC. Water: a comprehensive treatise. New York: Plenum Publications; 1995.

    Google Scholar 

  22. Nusselder JJH, Engberts JB. Toward a better understanding of the driving force for micelle formation and micellar growth. J Colloid Interface Sci. 1992;148:353–61.

    Article  CAS  Google Scholar 

  23. Shaw DJ. Introduction to colloid and interface chemistry. 2nd ed. London: Butterworths; 1978.

    Google Scholar 

  24. Shimizu S, Augusto P, Pires R, Seoud AE. Thermodynamics of micellization of benzyl(2-acylaminoethyl)dimethylammonium chloride surfactants in aqueous solutions: a conductivity and titration calorimetry study. Langmuir. 2004;20:9551–9.

    Article  CAS  Google Scholar 

  25. Zhang HL, Kong Z, Yan YM, Li GZ, Yu L, Li Z. Studies on the CMC and the thermodynamic function of the anionic surfactants in the DMA/long-chain alcohol systems using a microcalorimetric method. Acta Chim Sin. 2007;65:906–12.

    CAS  Google Scholar 

  26. Singh HN, Syed M, Saleem SM, Singh RP, Birdi KS. Micelle formation of ionic surfactants in polar nonaqueous solvents. J Phys Chem. 1980;84:2191–4.

    Article  CAS  Google Scholar 

  27. Lumry R, Rafender S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water. Biopolymers. 1970;9:1125–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Scientific Foundation (Z2007B03) and the Technology Development Project (2006GG2206004) of Shandong Province of China and the Doctoral Fund of the Ministry of Education of China (New Teachers Fund) (070422047) and the Opening Fund of Key Laboratory of Colloid & Interface Chemistry, Ministry of Education, Shandong University of China (200704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Fei, G., Honglin, Z. et al. Effects of long-chain alcohols on the micellar properties of anionic surfactants in non-aqueous solutions by titration microcalorimetry. J Therm Anal Calorim 96, 859–864 (2009). https://doi.org/10.1007/s10973-009-0059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0059-7

Keywords

Navigation