Skip to main content
Log in

Growth of Nd-doped YAG powder by sol spray process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Yttrium aluminum garnet (YAG) and neodymium-doped yttrium aluminum garnet (Nd-YAG) nano-crystalline powders were successfully grown using cost effective sol spray process without the addition of any chelating agent or organic templates. Thermal decomposition behavior was studied by thermogravimetry (TG) and differential thermal analysis (DTA). Results revealed that crystallization of YAG started around 920 °C. The shrinkage/expansion behavior of synthesized powder was examined by dilatometer and revealing that sintering kinetics of these materials can be related to the evaporation of binder and formation of crystalline phases. Nano-crystallinity and garnet structure of YAG and Nd-YAG specimens were analyzed by Raman, fourier transform infra red (FTIR), and X-ray diffraction (XRD) techniques. XRD patterns were indexed using Rietveld refinement method. Smaller lattice parameter and a small change in atomic position of oxygen were found in Nd-YAG when compared with YAG structure. Scanning electron microscope (SEM) results indicated that particle size of Nd-YAG was <150 nm. The morphology of Nd-YAG nanosized powder was rounded in shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caponetti E, Martino DC, Saladino ML. Preparation of Nd:YAG nanopowder in a confined environment. Langmuir. 2007;23:3947–52.

    Article  CAS  Google Scholar 

  2. Lu J, Ueda K, Yagi H, Yanagitani T, Akiyama Y, Kaminskii A. Neodymium doped yttrium aluminium garnet (Y3Al5O12) nanocrystalline ceramics: a new generation of solid-state laser and optical materials. J Alloys Compd. 2002;341:220–5.

    Article  CAS  Google Scholar 

  3. Pakutinskiene I, Mathur S, Shen H, Kudabiene G, Jasaitis D, Kareiva A. From precursors to ceramic materials. II. Synthesis and specific features of new garnet structure compounds. Mater Sci (Medziagotyra). 2003;9:374–6.

    Google Scholar 

  4. Hreniak D, Strek W, Mazur P. Preparation, spectroscopy and morphology of Nd-YAG nanostructures. Mater Sci. 2002;20:39–45.

    CAS  Google Scholar 

  5. Ikesue A. Polycrystalline Nd-YAG ceramics laser. Opt Mater. 2002;19:183–7.

    Article  CAS  Google Scholar 

  6. Mah T-I, Parthasarthy TA, Lee HD. Polycrystalline YAG structural or functional. J Ceram Proc Res. 2004;5:369–72.

    Google Scholar 

  7. Naglieri V, Palmero P, Montanaro L. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim. 2009;97:231–7.

    Article  CAS  Google Scholar 

  8. Costa AL, Esposito L, Medri V, Bellosi A. Synthesis of Nd-YAG material by citrate-nitrate sol-gel combustion route. Adv Eng Mater. 2007;9:307–12.

    Article  CAS  Google Scholar 

  9. Guo X, Devi PS, Ravi BG, Parise JB, Sampath S, Hanson JC. Phase evolution of yttrium–aluminium–garnet (YAG) in a citrate–nitrate gel combustion process. J Mater Chem. 2004;14:1288–92.

    Article  CAS  Google Scholar 

  10. Li X, Li Q, Wang J, Yang S, Liu H. Synthesis of Nd3+ doped nano-crystalline yttrium aluminum garnet (YAG) powders leading to transparent ceramic. Opt Mater. 2007;29:528–31.

    Article  CAS  Google Scholar 

  11. Caponeti E, Saladino ML, Serra F, Enzo S. Co-precipitation synthesis of Nd-YAG nano-powders: the effect of Nd dopant addition with thermal treatment. J Mater Sci. 2007;42:4418–27.

    Article  Google Scholar 

  12. Hakuta Y, Seino K, Ura H, Adschiri T, Takizawa H, Arai K. Production of phosphor (YAG:Tb) fine particles by hydrothermal synthesis in supercritical water. J Mater Chem. 1999;9:2671–4.

    Article  CAS  Google Scholar 

  13. Takamori T, David LD. Controlled nucleation for hydrothermal growth of YAG powders. J Am Ceram Soc Bull. 1986;65:1282–6.

    CAS  Google Scholar 

  14. Devi PS, Li Y, Margolis J, Parise JB, Sampath S, Herman H, Hanson JC. Comparison of citrate-nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet. J Mater Res. 2002;17:2846–51.

    Article  CAS  Google Scholar 

  15. Chung BJ, Park JY, Sim SM. Synthesis of yttrium aluminum garnet powder by a citrate gel method. J Ceram Proc Res. 2003;4:145–50.

    Google Scholar 

  16. Vaqueiro P, Lopequea MA. Influence of complexing agents and pH on yttrium–iron garnet synthesized by the sol–gel method. Chem Mater. 1997;9:2836–41.

    Article  CAS  Google Scholar 

  17. Tachiwaki T, Yoshinaka M. Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics. Solid State Commun. 2001;119:603–6.

    Article  CAS  Google Scholar 

  18. De La Rosa E, Diaz-Torres LA, Salas P, Arredondo A, Montoya JA, Angeles C, Rodriguez RA. Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol-gel method. Opt Mater. 2005;27:1793–9.

    Article  Google Scholar 

  19. Durrani SK, Qureshi AH, Qayyum S, Arif M. Development of superconducting phases in BSCCO and Ba-BSCCO by sol spray process. J Therm Anal Calorim. 2009;95:87–91.

    Article  CAS  Google Scholar 

  20. Thompson JS. A simple rhyme for a simple formula. J Chem Educ. 1988;65:704–5.

    Article  Google Scholar 

  21. Cinibulk MK. Synthesis of yttrium aluminum garnet from a mixed-metal citrate precursor. J Am Ceram Soc. 2000;83:1276–8.

    Article  CAS  Google Scholar 

  22. Wang S, Xu Y, Lu P, Xu C, Cao W. Synthesis of yttrium aluminium garnet (YAG) from an ethylenediaminetetraacetic acid precursor. Mater Sci Eng B. 2006;127:203–6.

    Article  CAS  Google Scholar 

  23. Vaidhyanathan B, Binner JGP. Microwave assisted synthesis of nanocrystalline YAG. J Mater Sci. 2006;41:5954–7.

    Article  CAS  Google Scholar 

  24. Panneer SM, Subanna GN, Rao KJ. Translucent yttrium aluminum garnet: microwave-assisted route to synthesis and processing. J Mater Res. 2001;16:2773–6.

    Article  Google Scholar 

  25. Chen YF, Lim PK, Lim S, Yang YJ, Hu LJ, Chiang HP, Tse WS. Raman scattering investigation of Yb:YAG crystals grown by the Czochralski method. J Raman Spectrosc. 2003;34:882–5.

    Article  CAS  Google Scholar 

  26. Anderson MT, Poeppelmeier KR. Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations. Chem Mater. 1991;3:476–82.

    Article  CAS  Google Scholar 

  27. Young RA, editor. The Rietveld methods. Oxford: IUCR-Oxford University Press; 1995.

    Google Scholar 

  28. Kaithwas N, Deshmukh M, Kar S, Dave M, Lalla NP, Ryuh KS, Bartwal S. Preparation of Y3Al5O12 nanocrystals by low temperature glycol route. Cryst Res Technol. 2007;42:991–4.

    Article  CAS  Google Scholar 

  29. Culity BD, Stock SR. Elements of X-Ray diffraction. 2nd ed. Reading: Addition-Wesley; 1978.

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank M. A. Hussain and Dr. N. Khalid for XRD and FTIR analysis, respectively. Authors also like to thank CDL for providing access to characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Qureshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrani, S.K., Saeed, K., Qureshi, A.H. et al. Growth of Nd-doped YAG powder by sol spray process. J Therm Anal Calorim 104, 645–651 (2011). https://doi.org/10.1007/s10973-010-1031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1031-2

Keywords

Navigation