Skip to main content
Log in

Soot oxidation kinetics from TG experiments

Can they be used reliably in diesel particulate filter modelling tools?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis (TG) has been used extensively for soot oxidation studies. Its known experimental and computational difficulties, however, have led to extended criticism concerning the reliability of the extracted kinetics and their potential for reliable reaction modelling. This study explores if TG kinetics could lead to successful simulation results notwithstanding the related disputes. For this, TG and mini-scale soot oxidation experiments with oxygen (O2) were conducted. The TG kinetics reliability was controlled through comparison with the corresponding mini-scale results and by the satisfactory simulation of the mini-scale experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Howitt JS, Montierth MR. Cellular ceramic diesel particulate filter. SAE technical paper 810114; 1981.

  2. Koltsakis GC, Stamatelos AM. Catalytic automotive exhaust aftertreatment. Prog Energy Combust. 1997;23:1–39.

    Article  CAS  Google Scholar 

  3. Gilot P, Bonnefoy F, Marcuccilli F, Prado G. Determination of kinetic data for soot oxidation. Modeling of competition between oxygen diffusion and reaction during thermogravimetric analysis. Combust Flame. 1993;95:87–100.

    Article  CAS  Google Scholar 

  4. Stanmore BR, Brilhac JF, Gilot P. The oxidation of soot: a review of experiments, mechanisms and models. Carbon. 2001;39:2247–68.

    Article  CAS  Google Scholar 

  5. Roduit B, Maciejewski M, Baiker A. Influence of experimental conditions on the kinetic parameters of gas-solid reactions—parametric sensitivity of thermal analysis. Thermochimica Acta. 1996;282–283:101–19.

    Article  Google Scholar 

  6. Roduit B. Computational aspects of kinetic analysis: part E: The ICTAC kinetics project—numerical techniques and kinetics of solid state processes. Thermochim Acta. 2000;355:171–80.

    Article  CAS  Google Scholar 

  7. Galwey AK. Eradicating erroneous Arrhenius arithmetic. Thermochim Acta. 2003;399:1–29.

    Article  CAS  Google Scholar 

  8. Ahlstrom FA, Odenbrand ICU. Combustion characteristics of soot deposits from diesel engines. Carbon. 1989;27:475–83.

    Article  Google Scholar 

  9. Neeft JPA, Nijhuis TX, Smakman E, Makkee M, Moulijn JA. Kinetics of the oxidation of diesel soot. Fuel. 1997;76:1129–36.

    Article  CAS  Google Scholar 

  10. Yezerets A, Currier NW, Eadler HA, Suresh A, Madden PF, et al. Investigation of the oxidation behavior of diesel particulate matter. Catal Today. 2003;88:17–25.

    Article  CAS  Google Scholar 

  11. Kalogirou M, Pistikopoulos P, Ntziachristos L, Samaras ZI. Isothermal soot oxidation experiments with intermediate gas change in a Perkin-Elmer TGA 6. J Therm Anal Calorim. 2009;95:141–7.

    Article  CAS  Google Scholar 

  12. Kalogirou M, Samaras Z. A TGA kinetic study of uncatalyzed diesel soot oxidation. J Therm Anal Calorim. 2009;98:215–24.

    Article  CAS  Google Scholar 

  13. Kalogirou M, Katsaounis D, Koltsakis G, Samaras Z. Measurements of diesel soot oxidation kinetics in an isothermal flow reactor—catalytic effects using Pt based coatings. Top Catal. 2007;42–43:247–51.

    Article  Google Scholar 

  14. Koltsakis GC, Katsaounis DK, Markomanolakis IA, Samaras ZC,Naumann D, et al. Metal foam substrate for DOC and DPF applications. SAE technical paper 2007-01-0659; 2007.

  15. Satterfield CN. Mass transfer in heterogeneous catalysis. Cambridge: MIT Press; 1970.

    Google Scholar 

  16. Laurendeau NM. Heterogeneous kinetics of coal char gasification and combustion. Prog Energy Combust. 1978;4:221–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the valuable contribution of Dr. P. Pistikopoulos, A. Tzilvelis and D. Katsaounis, members of the laboratory staff, involved in the experimental study. We would also like to thank Dr. G. Koltsakis, Dr. O. Haralampous and I. Markomanolakis for their help on the DPF model. We also acknowledge the financial support of the Greek State Scholarship Foundation (IKY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kalogirou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalogirou, M., Samaras, Z. Soot oxidation kinetics from TG experiments. J Therm Anal Calorim 99, 1005–1010 (2010). https://doi.org/10.1007/s10973-010-0707-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0707-y

Keywords

Navigation