Skip to main content
Log in

Curing reaction of o-cresol-formaldehyde epoxy/LC epoxy(p-PEPB)/anhydride(MeTHPA)

Cure kinetics and molecular mechanism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The curing kinetics of a bi-component system about o-cresol-formaldehyde epoxy resin (o-CFER) modified by liquid crystalline p-phenylene di[4-(2,3-epoxypropyl) benzoate] (p-PEPB), with 3-methyl-tetrahydrophthalic anhydride (MeTHPA) as a curing agent, were studied by non-isothermal differential scanning calorimetry (DSC) method. The relationship between apparent activation energy E a and the conversion α was obtained by the isoconversional method of Ozawa. The reaction molecular mechanism was proposed. The results show that the values of E a in the initial stage are higher than other time, and E a tend to decrease slightly with the reaction processing. There is a phase separation in the cure process with LC phase formation. These curing reactions can be described by the Šesták–Berggren (S–B) equation, the kinetic equation of cure reaction as follows: \( {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} = A\exp \left( { - {\frac{{E_{\text{a}} }}{RT}}} \right)\alpha^{m} \left( {1 - a} \right)^{n} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akira I, Takeaki S, Yoshiji M, Haruhiko F, Hiroshi U. Hardening organic resin composition. Jpn Kokai Tokkyo Koho 2002;2002080727.

  2. López J, Rico M, Montero B, Díez J, Ramírez C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic: Effect of thermoplastic on cure reaction and thermal stability of the system. J Therm Anal Calorim. 2009;95:369–76.

    Article  Google Scholar 

  3. Ramírez C, Rico M, Barral L, Díez J, García-Garabal S, Montero B. Organic/inorganic hybrid materials from an epoxy resin cured by an amine silsesquioxane. J Therm Anal Calorim. 2007;87:69–72.

    Article  Google Scholar 

  4. Sharma P, Choudhary V, Narula AK. Curing kinetics and thermal stability of diglycidyl ether of bisphenol: Mixture of aromatic imide-amines of benzophenone 3,3′,4,4′-tetra-carboxylic acid dianhydride and 4,4′-diaminodiphenylsulfone. J Therm Anal Calorim. 2008;91:231–6.

    Article  CAS  Google Scholar 

  5. Villanueva M, Martín-Iglesias JL, Rodríguez-Añón JA, Proupín-Castiñeiras J. Thermal study of an epoxy system DGEBA (n = 0)/mXDA modified with POSS. J Therm Anal Calorim. 2009;96:575–82.

    Article  CAS  Google Scholar 

  6. Jahromi S, Kuipers WAG, Norder B, Mijs WJ. Liquid crystalline epoxide thermosets: dynamic mechanical and thermal properties. Macromolecules. 1995;28:2201–11.

    Article  CAS  Google Scholar 

  7. Hoyle CE, Watanab T, Whitehead J. Anisotropic network formation by photopolymerization of liquid crystal monomers in a low magnetic field. Macromolecules. 1994;27:6581–8.

    Article  CAS  Google Scholar 

  8. Kurihara S, Iwamoto K, Nonaka T. Preparation and structure of polymer networks by polymerization of liquid crystalline monomers in DC electric field. Polymer. 1998;39:3565–9.

    Article  CAS  Google Scholar 

  9. Zhao H, Gao JG, Li YF, Shen SG. Curing kinetics and thermal property characterization of bisphenol-F epoxy resin and MeTHPA system. J Therm Anal Calorim. 2003;74:227–36.

    Article  CAS  Google Scholar 

  10. Braun D, Frick G, Grell M, Klimes M, Wendorff JH. Liquid crystal/liquid-crystalline network composite systems structure formation and electro-optic properties. Liq Cryst. 1992;11:929–39.

    Article  CAS  Google Scholar 

  11. Kurihara S, Sakamoto A, Nonaka T. Liquid-crystalline polymer networks: effect of cross-linking on the stability of macroscopic molecular orientation. Macromolecules. 1999;32:3150–3.

    Article  CAS  Google Scholar 

  12. Giamberini M, Amendola E, Carfagna C. Liquid crystalline epoxy thermosets. Mol Cryst Liq Cryst. 1995;266:9–22.

    Article  CAS  Google Scholar 

  13. Zhang BL, Tang GL, Shi KY, You YC, Du ZJ, Huang J. A study on the properties of epoxy resin toughened by a liquid crystal-type oligomer. J Appl Polym Sci. 1999;71:177–84.

    Article  CAS  Google Scholar 

  14. Bae J, Jang J, Yoon SH. Cure behavior of the liquid-crystalline epoxy/carbon nanotube system and the effect of surface treatment of carbon fillers on cure reaction. Macromol Chem Phys. 2002;203:2196–3204.

    Article  CAS  Google Scholar 

  15. Perrin FX, Nguyen TH, Vernet JL. Kinetic analysis of isothermal and nonisothermal epoxy-amine cures by model-free isoconversional methods. Macromol Chem Phys. 2007;208:718–29.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Sbirrazzuoli N. Kinetic methods to study isothermal and nonisothermal epoxy-anhydride cure. Macromol Chem Phys. 1999;200:2294–3303.

    Article  CAS  Google Scholar 

  17. Atarsia A, Boukhili R. Relationship between isothermal and dynamic cure of thermosets via the isoconversion representation. Polym Eng Sci. 2000;40:607–20.

    Article  CAS  Google Scholar 

  18. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  19. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  20. Jahromi S, Lub J, Mol GN. Synthesis and photoinitiated polymerization of liquid crystalline diepoxides. Polymer. 1994;35:622–9.

    Article  CAS  Google Scholar 

  21. Liu XD, Gao JG, Luo QJ, Zhang XN, Wang YY. Synthesis and characterization of p-phenylene di-4-(allyloxy) benzoate. J Hebei Univ (nature). 2007;27:54–8.

    Google Scholar 

  22. Rosu D, Mititelu A, Cascaval CN. Cure kinetics of a liquid-crystalline epoxy resin studied by non-isothermal data. Polym Test. 2004;23:209–15.

    Article  CAS  Google Scholar 

  23. Catalani A, Bonicelli MG. Kinetics of the curing reaction of a diglycidyl ether of bisphenol A with a modified polyamine. Thermochim Acta. 2005;438:126–9.

    Article  CAS  Google Scholar 

  24. Vyazoykin S, Mititelu A, Sbirrazzuoli N. Kinetics of epoxy-amine curing accompanied by the formation of liquid crystalline structure. Macromol Rapid Commun. 2003;24:1060–5.

    Article  Google Scholar 

  25. Rosu D, Cascaval CN, Mustata F, Ciobanu C. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim Acta. 2002;383:119–27.

    Article  CAS  Google Scholar 

  26. Xu G, Shi WF, Shen SJ. Curing kinetics of epoxy resins with hyperbranched polyesters as toughening agents. J Polym Sci Part B Polym Phys. 2004;42:2649–56.

    Article  CAS  Google Scholar 

  27. Cole KC, Hechler JJ, Noel D. A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) sulfone. Macromolecules. 1991;24:3098–4010.

    Article  CAS  Google Scholar 

  28. Ma ZG, Gao J. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine. J Phys Chem B. 2006;110:12380–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is the project supported by Natural Science Foundation (B2005000108) of Hebei Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Zhang, X., Huo, L. et al. Curing reaction of o-cresol-formaldehyde epoxy/LC epoxy(p-PEPB)/anhydride(MeTHPA). J Therm Anal Calorim 100, 225–232 (2010). https://doi.org/10.1007/s10973-009-0629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0629-8

Keywords

Navigation