Skip to main content
Log in

DSC and spectroscopic investigation of human serum albumin adsorbed onto silica nanoparticles functionalized by amino groups

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Human serum albumin (HSA) adsorbed onto silica nanoparticles modified by 3-aminopropyltriethoxysilane (APTES) and polyethyleneimine (PEI) was investigated by differential scanning calorimetry, IR spectroscopy, and photon correlation spectroscopy. The structural alterations of the protein molecules induced from adsorption process were estimated on the basis of temperatures of denaturation transition (T d) of the protein in free (native) and adsorbed form. It was found that adsorption of the protein onto the APTES-modified silica nanoparticles results in an increase in the temperature of denaturation transition from 42 to 47.4 °C. HSA adsorbed onto the PEI-modified silica nanoparticles unfolds extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5:1909.

    Article  CAS  Google Scholar 

  2. Barratt GM. Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today. 2000;3:163–71.

    Article  CAS  Google Scholar 

  3. Couvreur P, Graft R, Andrieux K, Malvy C. Nanotechnologies for drug delivery: applications to cancer and autoimmune diseases. Prog Solid State Chem. 2006;34:231–5.

    Article  CAS  Google Scholar 

  4. Ohta KM, Fuji M, Takei T, Chikazana M. Development of a simple method for the preparation of a silica gel based controlled delivery system with a high drug content. Eur J Pharm Sci. 2005;26:87–91.

    Article  CAS  Google Scholar 

  5. Song SW, Hidajat K, Kawi S. pH-controlled drug release using hydrogel encapsulated mesoporous silica. Chem Commun (Camb). 2007;42:4396–8.

    Article  Google Scholar 

  6. Roveri N, Morpurgo M, Polazzo B, Parma B, Vivi L. Silica xerogels as a delivery system for the controlled release of different molecular weight heparins. Anal Bioanal Chem. 2005;381:603–6.

    Article  Google Scholar 

  7. Rosenholm JM, Lindén M. Towards establishing structure–activity relationship for mesoporous silica in drug delivery applications. J Control Release. 2008;128:157–64.

    Article  CAS  Google Scholar 

  8. Lundqvist M, Sethson I, Jonsson B-H. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir. 2004;20:10639–47.

    Article  CAS  Google Scholar 

  9. Vertegel A, Siegel R, Dordick J. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir. 2004;20:6800–7.

    Article  CAS  Google Scholar 

  10. Liu C-G, Chen X-G, Park H-J. Self-assembled nanoparticles based on linoleic-acid modified chitosan: stability and adsorption of trypsin. Carbohydr Polym. 2005;62:293–8.

    Article  CAS  Google Scholar 

  11. Liu H, Tian Y, Deng Z. Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c. Langmuir. 2007;23:9487–94.

    Article  CAS  Google Scholar 

  12. Sagvolden G, Giaever I, Feder J. Characteristic protein adhesion forces on glass and polystyrene substrates by atomic force microscopy. Langmuir. 1998;14:5984–7.

    Article  CAS  Google Scholar 

  13. Tunc S, Maitz M, Salzer R. Conformational changes during protein adsorption. FT-IR spectroscopic imaging of adsorbed fibrinogen layers gerald steiner. Anal Chem. 2007;79:1311–6.

    Article  Google Scholar 

  14. Buijs J, Norde W, Lichtenbelt J. Changes in the secondary structure of adsorbed IgG and F(ab’) studied by FTIR spectroscopy. Langmuir. 1996;12:1605–13.

    Article  CAS  Google Scholar 

  15. Engel MFM, van Mierlo CPM, Visser AJWG. Kinetic and structural characterization of adsorption induced unfolding of bovine α-lactalbumin. J Biol Chem. 2002;277:10922–30.

    Article  CAS  Google Scholar 

  16. Koutsopoulos S, vander Ost J, Norde W. Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability. Langmuir. 2004;20:6401–5.

    Article  CAS  Google Scholar 

  17. Rezwan K, Meier LP, Gauckler LJ. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings. Biomaterials. 2005;26:4351–7.

    Article  CAS  Google Scholar 

  18. Larsericsdotter H, Oscarsson S, Buijs J. Thermodynamic analysis of proteins adsorbed on silica particles: electrostatic effects. J Colloid Interface Sci. 2001;237:98–103.

    Article  CAS  Google Scholar 

  19. Tobias DJ, Mar W, Blasic JK, Klein ML. Molecular dynamics simulations of a protein on hydrophobic and hydrophilic surfaces. Biophys J. 1964;71:2933–41.

    Article  Google Scholar 

  20. Norde W. Adsorption of proteins from solution at the solid–liquid interface. Adv Colloid Interface Sci. 1986;25:267–340.

    Article  CAS  Google Scholar 

  21. Jin W, Brennan JD. Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta. 2002;461:1–36.

    Article  CAS  Google Scholar 

  22. Billsten P, Caresson U, Jonsson BH, Olofsson G, Hk F, Elwing H. Conformation of human carbonic anhydrase II variants adsorbed to silica nanoparticles. Langmuir. 1999;15:6395–9.

    Article  CAS  Google Scholar 

  23. Vermonden T, Giacomelli CE, Norde W. Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from AgI particles. Langmuir. 2001;17:3734–40.

    Article  CAS  Google Scholar 

  24. Hughes MA. The structure function relationship of silica polyamine composites. PhD Thesis, The University of Montana, Missoula, MT, USA; 2007.

  25. Kazitsina LA, Kupletskaya NB. Application of UV-, IR- and NMR spectroscopy in organic chemistry. Moscow: High School; 1971.

    Google Scholar 

  26. Lee DC, Haris PI, Chapman D, Mitchell RC. Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry. 1990;29:9185–93.

    Article  CAS  Google Scholar 

  27. Rezaei-Tavirani M, Moghaddamnia SH, Ranjbar B, Amani M, Marashi S-A. Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy. J Biochem Mol Biol. 2006;39:530–6.

    CAS  Google Scholar 

  28. Flora K, Brennan JD, Baker GA, Doody MA, Bright FV. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys J. 1998;75:1084–96.

    Article  CAS  Google Scholar 

  29. Farruggia B, Rodriguez F, Rigatuso R, Fidelio G, Picó G. The participation of human serum albumin domains in chemical and thermal unfolding. J Protein Chem. 2001;20(1):81–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Russian Foundation of Basic Research 09-03-97513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Parfenyuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parfenyuk, E.V., Kulikova, G.A. & Ryabinina, I.V. DSC and spectroscopic investigation of human serum albumin adsorbed onto silica nanoparticles functionalized by amino groups. J Therm Anal Calorim 100, 987–991 (2010). https://doi.org/10.1007/s10973-009-0604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0604-4

Keywords

Navigation