Skip to main content
Log in

Thermoanalytical studies of silver and lead jarosites and their solid solutions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dynamic and controlled rate thermal analysis has been used to characterise synthesised jarosites of formula [M(Fe)3(SO4)2(OH)6] where M is Pb, Ag or Pb–Ag mixtures. Thermal decomposition occurs in a series of steps. (a) dehydration, (b) well defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation. CRTA offers a better resolution and a more detailed interpretation of the decomposition processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal separation of the dehydroxylation steps, since in these cases a higher energy (higher temperature) is needed to drive out gaseous decomposition products through a decreasing space at a constant, pre-set rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schaller WT. Argentojarosite, a new silver mineral. J Wash Acad Sci. 1923;13:233.

    CAS  Google Scholar 

  2. Schempp CA. Argento-jarosite: a new silver mineral. Am J Sci. 1923;6:73–5.

    Article  CAS  Google Scholar 

  3. Dutrizac JE, Jambor JL, O’Reilly JB. Man’s first use of jarosite: the pre-Roman mining-metallurgical operations at Rio Tinto, Spain. Can Inst Min Metall Bull. 1983;76:78–82.

    CAS  Google Scholar 

  4. Dutrizac JE, Jambor JL. Jarosites and their application in hydrometallurgy. Rev Miner Geochem. 2000;40:405–52.

    Article  CAS  Google Scholar 

  5. Hilebranad WF, Wright FE, New A. Occurrence of plumbojarosite. Am J Sci. 1910;30:191–2.

    Article  CAS  Google Scholar 

  6. Leach FI. Plumbojarosite-a little-known mineral. Min J. 1937;20:40.

    CAS  Google Scholar 

  7. Mumme WG, Scott TR. The relationship between basic ferric sulfate and plumbojarosite. Am Min. 1966;51:443–53.

    CAS  Google Scholar 

  8. Dutrizac JE, Dinardo O, Kaiman S. Factors affecting lead jarosite formation. Hydrometallurgy. 1980;5:305–24.

    Article  CAS  Google Scholar 

  9. Taberdar T, Gulensoy H, Aydin AO. Plumbojarosite mineral found in Bolkardag mines [Turkey] by TGA, DTA, and X-ray diffraction, Marmara Universitesi Fen Bilimleri Dergisi 2, 1985. p. 76–93.

  10. Amoros JL, Lunar R, Tavira P. Jarosite: a silver-bearing mineral of the gossan of Rio Tinto (Huelva) and La Union (Cartagena, Spain). Mineralium Deposita. 1981;16:205–13.

    Article  CAS  Google Scholar 

  11. Rewitzer C, Hochleitner R. Minerals of the old slags from Lavrion, Greece (Part 2), Rivista Mineralogica Italiana, 1989. p. 83–100.

  12. Harris DL, Lottermoser BG, Duchesne J. Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland. Aust J Earth Sci. 2003;50:797–809.

    Article  CAS  Google Scholar 

  13. Hudson-Edwards KA, Schell C, Macklin MG. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. App Geochem. 1999;14:1015–30.

    Article  CAS  Google Scholar 

  14. Buckby T, Black S, Coleman ML, Hodson ME. Fe sulfate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain. Min Mag. 2003;67:263–78.

    Article  CAS  Google Scholar 

  15. Williams PA. Oxide zone geochemistry. Chichester, West Sussex, England: Ellis Horwood Ltd; 1990.

    Google Scholar 

  16. Nagai S, Yamanouchi N. Potassium ore jarosite. I. Properties of jarosite and leaching test of potassium portion, Nippon Kagaku Kaishi (1921-47) 52 (1949) 83–86.

  17. Kulp JL, Adler HH. Thermal study of jarosite. Am J Sci. 1950;248:475–87.

    Article  CAS  Google Scholar 

  18. Cocco G. Differential thermal analysis of some sulfate minerals. Periodico di Mineralogia. 1952;21:103–38.

    CAS  Google Scholar 

  19. Tsvetkov AI, Val’yashikhina EP. Thermal characteristics of minerals of the alunite group. Doklady Akademii Nauk SSSR. 1953;89:1079–82.

    CAS  Google Scholar 

  20. Tsvetkov AI, Val’yashikhina EP. Phase conversions of hydrated iron sulfates (fibroferrite, Fe(SO4)(OH).4.5H2O, and melanterite, FeSO4·7H2O) by heating. Doklady Akademii Nauk SSSR. 1953;93:343–6.

    CAS  Google Scholar 

  21. Dutrizac JE, Jambor JL. Reviews in mineralogy and geochemistry Volume 40. In: Alpers CN, Jambor JL, Nordstrom DK, editors. Chapter 8 Jarosites and their application in hydrometallurgy; 2000. p. 405–452.

  22. Thomas PS, Hirschausen D, White RE, Guerbois JP, Ray AS. Characterization of the oxidation products of pyrite by thermogravimetric and evolved gas analysis. J Therm Anal Calorim. 2003;72:769–76.

    Article  CAS  Google Scholar 

  23. Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.

    Article  CAS  Google Scholar 

  24. Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.

    Article  CAS  Google Scholar 

  25. Carmody O, Frost R, Xi Y, Kokot S. Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008;91:809–16.

    Article  CAS  Google Scholar 

  26. Frost RL, Locke A, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2+(C2O4)2·2H2O. J Therm Anal Calorim. 2008;93:993–7.

    Article  CAS  Google Scholar 

  27. Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.

    Article  CAS  Google Scholar 

  28. Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92:887–92.

    Article  CAS  Google Scholar 

  29. Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91:267–74.

    Article  CAS  Google Scholar 

  30. Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91:855–60.

    Article  CAS  Google Scholar 

  31. Palmer SJ, Frost RL, Nguyen T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008;92:879–86.

    Article  CAS  Google Scholar 

  32. Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.

    Article  Google Scholar 

  33. Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    Article  CAS  Google Scholar 

  34. Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.

    Article  CAS  Google Scholar 

  35. Zhao Y, Frost RL, Vagvolgyi V, Waclawik ER, Kristof J, Horvath E. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008;94:219–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund (OTKA) under grant No. K62175. The financial and infra-structure support of the Queensland University of Technology Inorganic Materials Research Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, R.L., Palmer, S.J., Kristóf, J. et al. Thermoanalytical studies of silver and lead jarosites and their solid solutions. J Therm Anal Calorim 101, 73–79 (2010). https://doi.org/10.1007/s10973-009-0406-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0406-8

Keywords

Navigation