Skip to main content
Log in

Thermogravimetric analysis of selected group (II) carbonateminerals — Implication for the geosequestration of greenhouse gases

  • Regular Papers
  • Environmental
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The precursors of carbonate minerals have the potential to react with greenhouse gases to form many common carbonate minerals. The carbonate bearing minerals, magnesite, calcite, strontianite and witherite, were synthesised and analysed using a combination of thermogravimetry and evolved gas mass spectrometry. The DTG curves show that as both the mass and the size of the metal cationic radii increase, the inherent thermal stability of the carbonate also increases dramatically. It is proposed that this inherent effect is a size stabilisation relationship between that of the carbonate and the metal cation. As the cationic radius increases in size, the radius approaches and in the case of Sr2+ and Ba2+ exceeds that of the overall size of the carbonate anion. The thermal stability of these minerals has implications for the geosequestration of greenhouse gases. The carbonates with the larger cations show significantly greater stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Bouzaid, R. L. Frost and W. N. Martens, J. Therm. Anal. Cal., 89 (2007) 511.

    Article  CAS  Google Scholar 

  2. J. Bouzaid and R. L. Frost, J. Therm. Anal. Cal., 89 (2007) 133.

    Article  CAS  Google Scholar 

  3. J. M. Bouzaid, R. L. Frost, A. W. Musumeci and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 745.

    Article  CAS  Google Scholar 

  4. R. L. Frost, J. M. Bouzaid, A. W. Musumeci, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 437.

    Article  CAS  Google Scholar 

  5. B. E. Scheetz and W. B. White, Am. Mineral., 62 (1977) 36.

    CAS  Google Scholar 

  6. V. C. Farmer and W. B. White, in: V. C. Farmer (Ed.), The Infrared spectra of minerals, Mineralogical Society, London 1974, pp. 227–279.

    Google Scholar 

  7. J. Lima-de-Faria, Structural mineralogy: an introduction, Kluwer Academic Publishers, Dordrecht; Boston 1994.

    Google Scholar 

  8. J. W. Anthony, R. A. Bideaux, K. W. Bladh and M. C. Nichols, Handbook of Mineralogy, Mineral Data Publishing, Tiscon, Arizona, USA 2003.

    Google Scholar 

  9. R. M. Dell and S. W. Weller, Trans. Farad. Soc., 55 (1959) 2203.

    Article  CAS  Google Scholar 

  10. C. W. Beck, Am. Mineral., 35 (1950) 985.

    CAS  Google Scholar 

  11. F. Burriel-Marti, E. Garcia Clavel and M. Rodriguez de la Pena, Quimica e Industria (Madrid), 18 (1972) 4.

    CAS  Google Scholar 

  12. A. Reisman, Anal. Chem., 32 (1960) 1566.

    Article  CAS  Google Scholar 

  13. N. Khan, D. Dollimore, K. Alexander and F. W. Wilburn, Thermochim. Acta, 367 (2001) 321.

    Article  Google Scholar 

  14. V. R. Choudhary, S. G. Pataskar, V. G. Gunjikar and G. B. Zope, Thermochim. Acta, 232 (1994) 95.

    Article  CAS  Google Scholar 

  15. V. R. Choudhary, S. G. Pataskar, M. Y. Pandit and V. G. Gunjikar, Thermochim. Acta, 180 (1991) 69.

    Article  CAS  Google Scholar 

  16. A. Bouwknegt, J. De Kok and J. A. W. De Kock, Thermochim. Acta, 9 (1974) 399.

    Article  CAS  Google Scholar 

  17. O. Carmody, R. Frost, Y. Xi and S. Kokot, J. Therm. Anal. Cal., 91 (2008) 809.

    Article  CAS  Google Scholar 

  18. R. L. Frost, A. J. Locke and W. Martens, J. Therm. Anal. Cal., 92 (2008) 887.

    Article  CAS  Google Scholar 

  19. R. L. Frost and D. Wain, J. Therm. Anal. Cal., 91 (2008) 267.

    Article  CAS  Google Scholar 

  20. M. C. Hales and R. L. Frost, J. Therm. Anal. Cal., 91 (2008) 855.

    Article  CAS  Google Scholar 

  21. S. J. Palmer, R. L. Frost and T. Nguyen, J. Therm. Anal. Cal., 92 (2008) 879.

    Article  CAS  Google Scholar 

  22. V. Vágvölgyi, L. M. Daniel, C. Pinto, J. Kristóf, R. L. Frost and E. Horváth, J. Therm. Anal. Cal., 92 (2008) 589.

    Article  Google Scholar 

  23. V. Vágvölgyi, L. M. Daniel, C. Pinto, J. Kristóf, R. L. Frost and E. Horváth, J. Therm. Anal. Cal., 92 (2008) 589.

    Article  Google Scholar 

  24. V. Vágvölgyi, R. L. Frost, M. Hales, A. Locke, J. Kristóf and E. Horváth, J. Therm. Anal. Cal., 92 (2008) 893.

    Article  Google Scholar 

  25. V. Vágvölgyi, M. Hales, W. Martens, J. Kristóf, E. Horváth and R. L. Frost, J. Therm. Anal. Cal., 92 (2008) 911.

    Article  Google Scholar 

  26. R. L. Frost, A. W. Musumeci, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 89 (2007) 95.

    Article  CAS  Google Scholar 

  27. A. W. Musumeci, G. G. Silva, W. N. Martens, E. R. Waclawik and R. L. Frost, J. Therm. Anal. Cal., 88 (2007) 885.

    Article  CAS  Google Scholar 

  28. Y. Zhao, R. L. Frost, W. N. Martens and H. Y. Zhu, J. Therm. Anal. Cal., 90 (2007) 755.

    Article  CAS  Google Scholar 

  29. Q. Sun and Y. Deng, J. Colloid Interface Sci., 278 (2004) 376.

    Article  CAS  Google Scholar 

  30. C. Wang, P. Xiao, J. Zhao, X. Zhao, Y. Liu and Z. Wang, Powder Technol., 170 (2006) 31.

    Article  CAS  Google Scholar 

  31. Y. Wen, L. Xiang and Y. Jin, Mater. Lett., 57 (2003) 2565.

    Article  CAS  Google Scholar 

  32. J.-W. Ahn, K.-S. Choi, S.-H. Yoon and H. Kim, Synthesis of Aragonite by the Carbonation Process, 2004, pp. 286–288.

  33. A.-H. Park and L.-S. Fan, Carbon dioxide sequestration using magnesium-containing minerals. (USA). Application: US US, 2005, p. 13.

    Google Scholar 

  34. D. J. Fauth, J. R. Jones, J. P. Knoer and Y. Soong, Proceedings — Annual International Pittsburgh Coal Conference 17th (2000) 1154.

  35. R. M. Dheilly, J. Tudo, Y. Sebaibi and M. Queneudec, Construction Building Mater., 16 (2002) 155.

    Article  Google Scholar 

  36. K. S. Lackner, C. H. Wendt, D. P. Butt, E. L. Joyce and D. H. Sharp, Energy, 20 (1995) 1153.

    Article  CAS  Google Scholar 

  37. J.-H. Kim, J.-W. Ahn, S.-J. Ko, W.-K. Park and C. Han, Mater. Sci. Forum, 510 (2006) 990.

    Article  Google Scholar 

  38. Q. Liu, W. Shang, B. Liu, W. Chen and S. Chen, Xi’an Jiaotong Daxue Xuebao, 33 (1999) 17.

    CAS  Google Scholar 

  39. M. S. Refat, S. M. Teleb and S. A. Sadeek, Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 60 (2004) 2803.

    Article  CAS  Google Scholar 

  40. J. Yu, X. Zhao, B. Cheng and Q. Zhang, J. Solid State Chem., 178 (2005) 861.

    Article  CAS  Google Scholar 

  41. J. H. Huang, Z. F. Mao and M. F. Luo, Mater. Res. Bull., in press.

  42. C. Shivkumara, P. Singh, A. Gupta and M. S. Hegde, Mater. Res. Bull., 41 (2006) 1455.

    Article  CAS  Google Scholar 

  43. J. Harborne, Materials Australia, 39 (2006) 38.

    CAS  Google Scholar 

  44. E. H. Oelkers and J. Schott, Chem. Geology, 217 (2005) 183.

    Article  CAS  Google Scholar 

  45. P. J. Cook and B. Hooper, Publications of the Australasian Institute of Mining and Metallurgy, 2/2004 (2004) 15.

  46. K. Kyaw, T. Shibata, F. Watanabe, H. Matsuda and M. Hasatani, Energy Convers. Manage., 38 (1997) 1025.

    Article  CAS  Google Scholar 

  47. D. K. Gledhill and J. W. Morse, Geochim. Cosmochim. Acta, 70 (2006) 5802.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, R.L., Hales, M.C. & Martens, W.N. Thermogravimetric analysis of selected group (II) carbonateminerals — Implication for the geosequestration of greenhouse gases. J Therm Anal Calorim 95, 999–1005 (2009). https://doi.org/10.1007/s10973-008-9196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9196-7

Keywords

Navigation