Skip to main content
Log in

Thermal behavior of titania grafted with phosphonic acids under non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Metal or metal oxide nanoparticles possess unique features compared to equivalent larger-scale materials. In this paper we present the synthesis of grafted titania with phosphonic acids, their characterization and an extended non-isothermal kinetic study. The obtained results show that there in no significant difference between acids and esters in grafting reaction. The phosphorus content wary between 0.9 and 1.80% and is comparable with literature data. IR and AFM studies confirmed the formation of grafted titania. Extended non-isothermal kinetic study using different methods confirmed the complexity of thermooxidative degradation processes in non-isothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Neouze MA, Schubert U. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem. 2008;139:183–95.

    Article  CAS  Google Scholar 

  2. Mingalyov PG, Lisichkin GV. Chemical modification of oxide surfaces with organophosphorus(V) acids and their esters. Russ Chem Rev. 2006;75:541–57.

    Article  CAS  Google Scholar 

  3. Mutin PH, Guerrero G, Vioux A. Hybrid materials from organophosphorus coupling molecules. J Mater Chem. 2005;15:3761–8.

    Article  CAS  Google Scholar 

  4. Vioux A, Mutin PH, Le Bideau J, Leclercq D. Organophosphorus-based organic/inorganic hybrids. Mat Res Soc Symp Proc. 2000;628:CC1.4.1–4.12.

    Google Scholar 

  5. Gao W, Dickinson L, Grozinger C, Morin FG, Reven L. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir. 1996;126:429–6435.

    Google Scholar 

  6. Randon J, Blanc P, Paterson R. Modification of ceramic membrane surfaces using phosphoric acid and alkyl phosphonic acids and its effects on ultrafiltration of BSA protein. J Membr Sci. 1995;98:119–29.

    Article  CAS  Google Scholar 

  7. Caro J, Noack M, Kolsch P. Chemically modified ceramic membranes. Microporous Mesoporous Mater. 1998;22:321–32.

    Article  CAS  Google Scholar 

  8. Zakeeruddin SM, Nazeeruddin MK, Pechy P, Rotzinger FP, Humphrybaker R, Kalyanasundaram K, et al. Molecular engineering of photosensitizers for nanocrystalline solar cells: synthesis and characterization of Ru dyes based on phosphonated terpyridines. Inorg Chem. 1997;36:5937–46.

    Article  CAS  Google Scholar 

  9. Guerrero G, Mutin PH, Vioux A. Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chem Mater. 2001;13:4367–73.

    Article  CAS  Google Scholar 

  10. Guerrero G, Chaplais G, Mutin PH, Le Bideau J, Leclercq D, Vioux A. Grafting of alumina by diphenylphosphinate coupling agents. Mat Res Soc Symp Proc. 2000;628:CC6.6–CC6.6.1.

    Google Scholar 

  11. Tombácz E, Szekeres M, Kertész I, Turi L. pH-dependent aggregation state of highly dispersed alumina, titania and silica particles in aqueous medium. Prog Colloid Polym Sci. 1995;98:160–8.

    Article  Google Scholar 

  12. Funar-Timofei S, Ilia G. Simulation of grafting reaction of benzyl phosphonic acid on titanium oxide by the semiempirical PM6 approach. J Opt Adv Mater. 2008;10:2649–52.

    CAS  Google Scholar 

  13. Flynn IH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B. 1966;4:323–8.

    Article  CAS  Google Scholar 

  14. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Lesnikovich AI. Practical application of isoconversional methods. Thermochim Acta. 1992;203:177–85.

    Article  CAS  Google Scholar 

  16. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci. 1969;7:41–6.

    Article  CAS  Google Scholar 

  17. Serra R, Nomen R, Sempere J. The non-parametric kinetics a new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  18. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  19. Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56:843–9.

    Article  CAS  Google Scholar 

  20. Ioitescu A, Vlase G, Vlase T, Doca N. Kinetics of decomposition of different acid calcium phosphates. J Therm Anal Calorim. 2007;88:121–5.

    Article  CAS  Google Scholar 

  21. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  22. Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92:635–8.

    Article  CAS  Google Scholar 

  23. Vlase T, Vlase G, Doca N. Thermal behavior of some phenitoine pharmaceuticals. J Therm Anal Calorim. 2008;92:259–62.

    Article  CAS  Google Scholar 

  24. Wall ME. A practical approach to microarray data analysis, vol. 9. Norwel: Kluwer. LANL LA-UR-02; 2003. p. 91–109.

  25. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Ilia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilia, G., Drehe, M., Vlase, T. et al. Thermal behavior of titania grafted with phosphonic acids under non-isothermal conditions. J Therm Anal Calorim 100, 917–923 (2010). https://doi.org/10.1007/s10973-009-0381-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0381-0

Keywords

Navigation