Skip to main content

Innovative Approaches in Characterization of Carbon Nanotube

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Carbon nanotubes (CNTs) are promising modern nanostructured materials with extraordinary mechanical, chemical, and good thermal stability properties as well as high aspect ratio. These features make them useful materials in various applications. However, pristine CNTs tend to form aggregates and bundles making them difficult to use. Superficial modification/treatment of CNTs with organic or inorganic materials results in improvement of nanotubes’ useful properties and applicability, giving them the required magnetic, catalytic, electronic properties, etc. Therefore, characterization of CNTs is carried out to check and ascertain its features such as type, surface structure, and morphology (diameter, length), dispersion, configuration, size, etc. In this chapter, current innovative approaches widely utilized in CNTs characterization are classified and discussed with highlights on their principle as well as most of their merits and demerits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar K, Khan SA, Khan SB, Asiri AM (2018) Scanning electron microscopy: principle and applications in nanomaterials characterization. In: Sharma SK (ed) Handbook of materials characterization. Springer International Publishing AG, Part of Springer Nature. https://doi.org/10.1007/978-3-319-92955-2_4

    Chapter  Google Scholar 

  • Allaf RM, Rivero IV, Spearman SS, Hope-weeks LJ (2011) On the preparation of as-produced and purified single-walled carbon nanotube samples for standardized X-ray diffraction characterization. Mater Charact 62:857–864. https://doi.org/10.1016/j.matchar.2011.06.005

    Article  CAS  Google Scholar 

  • Alturaif HA, ALOthman ZA, Shapter JG, Wabaidur SM (2014) Use of carbon nanotubes (CNTs) with polymers in solar cells. Molecules 19(11):17329–17344

    Article  Google Scholar 

  • Arunkumar T, Karthikeyan R, Ram Subramani R, Viswanathan K, Anish M (2020) Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). Int J Ambient Energy 41:452–456. (AC21 International Forum 2014)

    Article  CAS  Google Scholar 

  • Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118. https://doi.org/10.1016/j.mseb.2005.02.046

    Article  CAS  Google Scholar 

  • Burian A, Dore JC, Kyotani T, Honkimaki V (2005) Structural studies of oriented carbon nanotubes in alumina channels using high energy X-ray diffraction. Carbon 43:2723–2729. https://doi.org/10.1016/j.carbon.2005.05.032

    Article  CAS  Google Scholar 

  • Caetano FR, Felippe LB, Zarbin AJ, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensors Actuators B Chem 243:43–50

    Article  CAS  Google Scholar 

  • Cao A, Xu C, Liang J, Wu D, Wei B (2001) X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett 344:13–17

    Article  CAS  Google Scholar 

  • Chen M, Fan G, Tan Z, Yuan C, Xiong D, Guo Q, ... Li Z (2019) Tailoring and characterization of carbon nanotube dispersity in CNT/6061Al composites. Mater Sci Eng A 757:172–181

    Google Scholar 

  • Chirayil CJ, Abraham J, Mishra RK, George SC, Thomas S (2017) Instrumental techniques for the characterization of nanoparticles. In: Thermal and Rheological Measurement Techniques for Nanomaterials Characterization. Elsevier Inc, pp 1–36. https://doi.org/10.1016/B978-0-323-46139-9.00001-3

  • Chua M, Chui C, Chng C, Lau D (2013) Carbon nanotube-based artificial tracheal prosthesis: carbon nanocomposite implants for patient-specific ENT care. IEEE Nanotechnol Mag 7(4):27–31

    Article  Google Scholar 

  • Colomer J-F, Van Tendeloo G (2003) Electron diffraction and microscopy of single-walled carbon nanotubes bundles. In: Wang ZL, Hui C (eds) Electron microscopy of nanotubes. Klumer Academic Publishers, Boston/London, pp 45–70. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf

    Chapter  Google Scholar 

  • Das R, Hamid SBA, Ali ME, Ramakrishna S, Yongzhi W (2015) Carbon nanotubes characterization by X-ray powder diffraction – a review. Curr Nanosci 11:1–13. https://doi.org/10.2174/1573413710666140818210043

    Article  Google Scholar 

  • Davies G, El Sheikh A, Collett C, Yakub I, McGregor J (2021) Catalytic carbon materials from biomass. In: Emerging carbon materials for catalysis. Elsevier Inc., pp 161–195. https://doi.org/10.1016/b978-0-12-817561-3.00005-6

    Chapter  Google Scholar 

  • Dore J, Burian A, Tomita S (2000) Structural studies of carbon nanotubes and related materials by neutron and X-ray diffraction. In: Proceedings of the international conference on “Condensed Matter Physics,” Acta Physica Polonica A, Jaszowiec, pp 495–504

    Google Scholar 

  • Epp J (2016) X-ray diffraction (XRD) techniques for materials characterization. In: Hubschen G, Altpeter I, Tschuncky R, Herrmann H-G (eds) Materials characterization using nondestructive evaluation methods. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100040-3.00004-3

    Chapter  Google Scholar 

  • Fredi G, Dorigato A, Fambri L, Pegoretti A (2017) Wax confinement with carbon nanotubes for phase changing epoxy blends. Polymers 9(9):405

    Article  Google Scholar 

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 2013, 1–12. https://doi.org/10.1155/2013/578290

  • Herrero-Latorre C, Álvarez-Méndez J, Barciela-García J, García-Martín S, Peña- Crecente, R.M. (2015) Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Anal Chim Acta 853:77–94. https://doi.org/10.1016/j.aca.2014.10.008

    Article  CAS  Google Scholar 

  • Holbrook RD, Galyean AA, Gorham JM, Herzing A, Pettibone J (2015) Overview of nanomaterial characterization and metrology. In: Frontiers of Nanosciences. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-099948-7.00002-6

    Chapter  Google Scholar 

  • Hou X, Lv S, Chen Z, Xiao F (2018) Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 121:304–316

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Inkson BJ (2016) Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) for materials characterization. In: Hubschen G, Altpeter I, Tschuncky R, Herrmann H-G (eds) Materials characterization using nondestructive evaluation methods. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100040-3.00002-X

    Chapter  Google Scholar 

  • Kaliva M, Vamvakaki M (2020) Nanomaterials characterization. In: Polymer science and nanotechnology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816806-6.00017-0

    Chapter  Google Scholar 

  • Karimi M, Ghasemi A, Mirkiani S, Basri SMM, Hamblin MR (2017) Carbon Nanotubes in Drug and Gene Delivery. San Rafael, CA: Morgan & Claypool Publishers, pp 5–6

    Google Scholar 

  • Kennedy J, Fang F, Futter J, Leveneur J, Murmu PP, Panin GN, ... Manikandan E (2017) Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam Relat Mater 71:79–84

    Google Scholar 

  • Koloczek J, Hawelek L, Burian A, Dore JC, Honkimaki V, Kyotani T (2005) Modelling studies of carbon nanotubes – comparison of simulations and X-ray diffraction data. J Alloys Compd 401:46–50. https://doi.org/10.1016/j.jallcom.2005.02.068

    Article  CAS  Google Scholar 

  • Kumar SP, Pavithra KG, Naushad M (2019) Characterization techniques for nanomaterials. In: Nanomaterials for solar cell applications, Elsevier Inc. https://doi.org/10.1016/B978-0-12-813337-8.00004-7

  • Laudenbach J, Schmid D, Herziger F, Hennrich F, Kappes M, Muoth M, ... Maultzsch J (2017) Diameter dependence of the defect-induced Raman modes in functionalized carbon nanotubes. Carbon 112:1–7

    Google Scholar 

  • Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, Saavedra-Leos MZ (2020) Application of differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) in food and drug industries. Polymers 12:5. (AC21 International Forum 2014)

    Article  CAS  Google Scholar 

  • Liao J, Tan MJ (2011) Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol 208:42–48. (AC21 International Forum 2014)

    Article  CAS  Google Scholar 

  • Lopes CDCA, Limirio PHJO, Novais VR, Dechichi P (2018) Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev 53(9):747–769

    Article  CAS  Google Scholar 

  • Ma L, Dong X, Chen M, Zhu L, Wang C, Yang F, Dong Y (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes 7(1):16

    Article  Google Scholar 

  • Mehra NK, Jain K, Jain NK (2015) Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 20(6):750–759

    Article  CAS  Google Scholar 

  • Mohamed MA, Jaafar J, Ismail AF, Othman MHD, Rahman MA (2017) Fourier transform infrared (FTIR) spectroscopy. In: Membrane characterization. Elsevier United Kingdom, pp 3–29. https://doi.org/10.1016/B978-0-444-63776-5.00001-2

  • Nicolson F, Kircher MF, Stone N, Matousek P (2021) Spatially offset Raman spectroscopy for biomedical applications. Chem Soc Rev

    Google Scholar 

  • Omrani AN, Esmaeilzadeh E, Jafari M, Behzadmehr A (2019) Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam Relat Mater 93:96–104

    Article  CAS  Google Scholar 

  • Porwal D, Mukhopadhyay K, Ram K, Mathur GN (2007) Investigation of the synthesis strategy of CNTs from CCVD by thermal analysis. Thermochim Acta 463:53–59

    Article  CAS  Google Scholar 

  • Rahman G, Najaf Z, Mehmood A, Bilal S, Mian SA, Ali G (2019) An overview of the recent progress in the synthesis and applications of carbon nanotubes. C–J Carbon Res 5(1):3

    Article  CAS  Google Scholar 

  • Raju M, Kulkarni YA, Wairkar S (2019) Therapeutic potential and recent delivery systems of berberine: a wonder molecule. J Funct Foods 61:103517

    Article  CAS  Google Scholar 

  • Sarycheva A, Gogotsi Y (2020) Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2T x MXene. Chem Mater 32(8):3480–3488

    Article  CAS  Google Scholar 

  • Srivastava R, Suman H, Shrivastava S, Srivastava A (2019) DFT analysis of pristine and functionalized Zigzag CNT: a case of H2S sensing. Chem Phys Lett 731:136575

    Article  CAS  Google Scholar 

  • Susi T, Pichler T, Ayala P (2015) X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J Nanotechnol 6:177–192. https://doi.org/10.3762/bjnano.6.17

    Article  CAS  Google Scholar 

  • Szufa S, Dzikuć M, Adrian Ł, Piersa P, Romanowska-Duda Z, Lewandowska W, ... Piwowar A (2020) Torrefaction of oat straw to use as solid biofuel, an additive to organic fertilizers for agriculture purposes and activated carbon–TGA analysis, kinetics. In: E3S web of conferences, vol 154. EDP Sciences, p 02004

    Google Scholar 

  • Veisi H, Kazemi S, Mohammadi P, Safarimehr P, Hemmati S (2019) Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. Polyhedron 157:232–240

    Article  CAS  Google Scholar 

  • Wang X, Mu P, Zhang C, Chen Y, Zeng J, Wang F, Jiang JX (2017) Control synthesis of tubular hyper-cross-linked polymers for highly porous carbon nanotubes. ACS Appl Mater Interfaces 9(24):20779–20786

    Article  CAS  Google Scholar 

  • Wang X, Dong A, Hu Y, Qian J, Huang S (2020) A review of recent work on using metal– organic frameworks to grow carbon nanotubes. Chem Commun 56(74):10809–10823

    Article  CAS  Google Scholar 

  • Williams DB, Carter CB (eds) (2009) Transmission electron microscopy Part 1: basics, 2nd edn. Springer, New York

    Google Scholar 

  • Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ (2019) Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale 11:1475–1504. (AC21 International Forum 2014)

    Article  CAS  Google Scholar 

  • Zhang X, Wen R, Huang Z, Tang C, Huang Y, Liu Y, ... Xu Y (2017) Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energ Buildings 149:463–470

    Google Scholar 

  • Zheng Q, Zhang Y, Montazerian M, Gulbiten O, Mauro JC, Zanotto ED, Yue Y (2019) Understanding glass through differential scanning calorimetry. Chem Rev 119(13):7848–7939

    Article  CAS  Google Scholar 

  • Zhu Y, Zhiyu B, Kalavakunda V, Hosmane NS (2017) Endofullerenes and carboranes. In: Comprehensive supramolecular chemistry II, pp 479–487

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the University Research Council (URC) of the University of Johannesburg for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olusola Olaitan Ayeleru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Olaitan Ayeleru, O. et al. (2021). Innovative Approaches in Characterization of Carbon Nanotube. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics