Skip to main content
Log in

Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS

Part 3. Candidate from thiourea and Ti(IV)-ethoxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of an amorphous precursor for S-doped titania (TiO2) nanopowders, prepared by controlled sol–gel hydrolysis–condensation of titanium(IV) tetraethoxide and thiourea in aqueous ethanol, has been studied up to 800 °C in flowing air. Simultaneous thermogravimetric and differential thermal analysis coupled online with quadrupole mass spectrometer (TG/DTA-MS) and FTIR spectrometric gas cell (TG-FTIR) have been applied for analysis of released gases (EGA) and their evolution dynamics in order to explore and simulate thermal annealing processes of fabrication techniques of the aimed S:TiO2 photocatalysts with photocatalytic activities under visible light. The precursor sample prepared with thiourea, released first water endothermically from room temperature to 190 °C, carbonyl sulfide (COS) from 120 to 240 °C in two stages, ammonia (NH3) from 170 to 350 °C in three steps, and organic mater (probably ether and ethylene) between 140 and 230 °C. The evolution of CO2, H2O and SO2, as oxidation products, occurs between 180 and 240 °C, accompanied by exothermic DTA peaks at 190 and 235 °C. Some small mass gain occurs before the following exothermic heat effect at 500 °C, which is probably due to the simultaneous burning out of residual carbonaceous and sulphureous species, and transformation of amorphous titania into anatase. The oxidative process is accompanied by evolution of CO2 and SO2. Anatase, which formed also in the exothermic peak at 500 °C, mainly keeps its structure, since only 10% of rutile formation is detected below or at 800 °C by XRD. Meanwhile, from 500 °C, a final burning off organics is also indicated by continuous CO2 evolution and small exothermic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bacsa R, Kiwi J, Ohno T, Albers P, Nadtochenko V. Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J Phys Chem B. 2005;109:5994–6003 (and references therein).

    Google Scholar 

  2. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293:269–71.

    Article  CAS  Google Scholar 

  3. Umebayashi T, Yamaki T, Tanaka S, Asai K. Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett. 2003;32:330–1.

    Article  CAS  Google Scholar 

  4. Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett. 2003;32:364–5.

    Article  CAS  Google Scholar 

  5. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A: Gen. 2004;265:115–21.

    Article  CAS  Google Scholar 

  6. Ohno T. Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities. Water Sci Technol. 2004;49:159–63.

    CAS  Google Scholar 

  7. Tachikawa T, Toja S, Kawai K, Endo M, Fujitsuka M, Ohno T, et al. Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J Phys Chem. 2004;108:19299–306.

    CAS  Google Scholar 

  8. Takeshita K, Yamakata A, Ishibashi T, Onishi H, Nishijima K, Ohno T. Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2. J Photochem Phytobiol A: Chem. 2006;177:269–75.

    Article  CAS  Google Scholar 

  9. Ohno T, Miyamoto Z, Nishijima K, Kanemitsu H, Xueyuan F. Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by absorbing Fe3+ cations. Appl Catal A: Gen. 2006;302:62–8.

    Article  CAS  Google Scholar 

  10. Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B. 2004;108:19384–7.

    Article  CAS  Google Scholar 

  11. Sun H, Bai Y, Cheng Y, Jin W, Xu N. Preparation and characterization of visible-light-driven carbon–sulfur-codoped TiO2 photocatalysts. Ind Eng Chem Res. 2006;45:4971–6.

    Article  CAS  Google Scholar 

  12. Ohno T, Tsubota T, Toyofuku M, Inaba R. Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light. Catal Lett. 2004;98:255–8.

    Article  CAS  Google Scholar 

  13. Yin S, Ihara K, Aita Y, Komatsu M, Sato T. Visible-light induced photocatalytic activitity of TiO2−x A y (A = N, S) prepared by precipitation route. J Photochem Phytobiol A: Chem. 2006;179:105–14.

    Article  CAS  Google Scholar 

  14. Xie Y, Zhao Q, Zhao XJ, Li J. Low-temperature preparation and characterization of N-doped and N–S-codoped TiO2 by sol–gel route. Catal Lett. 2007;118:231–7.

    Article  CAS  Google Scholar 

  15. Nishijima K, Kamai K, Murakami N, Tsubota T, Ohno T. Photocatalytic hydrogen or oxygen evolution from water over S- or N-doped TiO2 under visible light. Int J Photoenerg 2008; Article ID 173943, 2008. doi: 10.1155/2008/173943.

  16. Crişan M, Brăileanu A, Răileanu M, Crişan D, Teodorescu VS, Bîrjega R, et al. TiO2-based nanopowders obtained from different Ti-alkoxides. J Therm Anal Calorim. 2007;88:171–6.

    Article  Google Scholar 

  17. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders Part I. TiO2–anatase prepared by reacting titanium(IV) isopropoxide with formic acid. J Therm Anal Calorim. 2003;71:997–1009.

    Article  CAS  Google Scholar 

  18. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders Part I. TiO2-anatase prepared by reacting titanium(IV) isopropoxide with oxalic acid. J Therm Anal Calorim. 2003;71:1011–21 (and references therein).

    Google Scholar 

  19. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders Part I. TiO2-anatase prepared by reacting titanium(IV) isopropoxide with acetic acid. J Therm Anal Calorim. 2004;75:13–24.

    Article  CAS  Google Scholar 

  20. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders Part I. TiO2-anatase prepared by reacting titanium(IV) isopropoxide without chelating agents. J Therm Anal Calorim. 2004;75:25–34.

    Article  CAS  Google Scholar 

  21. Oja-Açik I, Madarász J, Krunks M, Tõnsuaadu K, Janke D, Pokol G, et al. Thermoanalytical studies of titanium(IV) acetylacetonate xerogels with emphasis on evolved gas analysis. J Therm Anal Calorim. 2007;88:557–63.

    Article  Google Scholar 

  22. Krunks M, Madarász J, Hiltunen L, Mannonen R, Mellikov E, Niinistö L. Structure and thermal behaviour of dichlorobis(thiourea)cadmium(II), a single-source precursor for CdS thin films. Acta Chem Scand. 1997;51:294–301.

    Article  CAS  Google Scholar 

  23. Madarász J, Bombicz P, Okuya M, Kaneko S, Pokol G. Online coupled TG-FTIR and TG/DTA-MS analyses of the evolved gases from dichloro(thiourea) tin(II). Solid State Ionics. 2004;172:577–81.

    Article  Google Scholar 

  24. Madarász J, Bombicz P, Okuya M, Kaneko S, Pokol G. Comperative online coupled TG-FTIR and TG/DTA-MS analyses of the evolved gases from thiourea complexes of SnCl2. Tetrachloropenta(thiourea) ditin(II), a compound rich in thiourea. J Anal Appl Pyrol. 2004;72:209–14.

    Article  Google Scholar 

  25. Madarász J, Krunks M, Niinistö L, Pokol G. Evolved gas analysis of dichlorobis(thiourea)zinc(II) by coupled TG-FTIR and TG/DTA-MS techniques. J Therm Anal Calorim. 2004;78:679–86.

    Article  Google Scholar 

  26. Madarász J, Pokol G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J Therm Anal Calorim. 2007;88:329–36 (and references therein).

    Google Scholar 

  27. Venz PA, Frost RL, Bartlett JR, Woolfrey JL, Kloprogge JT. Thermal transformations of titania hydrolysates prepared from tetraisopropoxytitanium(IV). Thermochim Acta. 2000;346:73–82.

    Article  CAS  Google Scholar 

  28. Hardy A, D’Haen J, Van Bael MK, Mullens J. An aqueous solution-gel citratoperoxo-Ti(IV) precursor: synthesis, gelation, thermo-oxidative decomposition and oxid crystallization. J Sol–Gel Sci Technol. 2007;44:65–74.

    Article  CAS  Google Scholar 

  29. Madarász J, Okuya M, Kaneko S, Pokol G. Thermal behavior of Ti-precursor sols for porous TiO2 thin films. Solid State Ionics. 2004;172:515–8.

    Article  Google Scholar 

  30. Madarász J, Okuya M, Varga PP, Kaneko S, Pokol G. TG/DTA-MS studies on titania precursors with low content of organics for porous thin films of TiO2. J Anal Appl Pyrol. 2007;79:479–83.

    Article  Google Scholar 

  31. Madarász J, Kaneko S, Okuya M, Pokol G. Comparative evolved gas analyses of crystalline and amorphous titanium(IV)oxo-hydroxo-acetylacetonates by TG-FTIR and TG/DTA-MS. Thermochim Acta. 2009;489:37–44. doi: 10.1016/j.tca.2009.01.020.

    Article  Google Scholar 

  32. Crişan M, Brăileanu A, Răileanu M, Zaharescu M, Crişan D, Drăgan N, et al. Sol–gel S-doped TiO2 materials for environmental protection. J Non-Cryst Solids. 2008;354:705–11.

    Article  Google Scholar 

  33. Madarász J, Brăileanu A, Pokol G. Comprehensive evolved gas analysis of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA-MS. Part 1. Precursor from thiourea and titanium(IV)-isopropoxide. J Anal Appl Pyrol. 2008;82:292–7.

    Article  Google Scholar 

  34. Madarász J, Brăileanu A, Crişan M, Pokol G. Comprehensive evolved gas analysis of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA-MS: Part 2. Precursor from thiourea and titanium(IV)-n-butoxide. J Anal Appl Pyrol. 2009;85:549-56. doi: 10.1016/j.jaap.2008.10.017.

    Article  Google Scholar 

  35. NIST Chemistry Webbook Standard Reference Database No 69, June 2009 Release. http://webbook.nist.gov/chemistry.

  36. Spectral Database for Organic Compounds, SDBS, National Institute of Advanced Industrial Science and Technology, Japan. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.

  37. Ischia M, Campostrini R, Lutterotti L, Gracia-Lopez E, Palmisano L, Schiavello M, et al. Synthesis, characterization and photocatalytic activity of TiO2 powders prepared under different gelling and pressure conditions. J Sol–Gel Sci Technol. 2005;33:201–13.

    Article  CAS  Google Scholar 

  38. Ren L, Huang X, Sun F, He X. Preparation and characterization of doped TiO2 nanodandelion. Mater Lett. 2007;61:427–31.

    Article  CAS  Google Scholar 

  39. Nishide T, Tanaka T, Yabe T. Temperature programmed desorption analysis of sol-gel-derived titania films. Design of a sol preparation procedure. J Therm Anal Calorim. 2007;90:373–8.

    Article  CAS  Google Scholar 

  40. Toshikazu N, Takayuki Y, Nobuyoshi M, Makiko S. Analysis of firing processes of titania gel films fabricated by sol–gel processes. Thin Solid Films. 2004;467:43–9.

    Article  CAS  Google Scholar 

  41. International Centre for Diffraction Data (ICDD), Powder Diffraction File (PDF), PDF-2 Release 2008.

Download references

Acknowledgements

The authors thank Mrs. H. Medzihradszky for the elemental analysis measurements. The purchase of our new HT-XRD apparatus has been supported by the EU (GVOP-3.2.1.-2004-04-0224, KMA) and the Hungarian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Madarász.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madarász, J., Brăileanu, A., Crişan, M. et al. Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS. J Therm Anal Calorim 97, 265 (2009). https://doi.org/10.1007/s10973-009-0235-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10973-009-0235-9

Keywords

Navigation