Skip to main content
Log in

Heat capacity of β-alanine in a temperature range between 6 and 300 K

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermodynamic properties of β-alanine in the temperature range 6.3–301 K were studied. No phase transitions were observed for the sample specially prepared to contain no solvent inclusions. At 298.15 K the calorimetric entropy and the difference in the enthalpy values are equal, respectively, to 126.6 JK−1 mol−1 and 19.220 Jmol−1. The C p (T) in the temperature range 6–16 K can be well described by Debye equation C p  = AT 3. A comparison of the data on the entropies of glycine polymorphs and of β-alanine was used to show, that the empirical Parks–Huffman rule holds in the case of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The Cp(T) curve measured for the sample with solvent inclusions had a pronounced peak at about 256 K, corresponding to melting of inclusions (about 0.14% of the total sample mass), which could be erroneously taken for a phase transition in β-alanine.

References

  1. Boldyreva EV. Crystalline amino acids—a link between chemistry, materials sciences and biology. In: Boeyens JCA, Ogilvie JF, editors. Models, mysteries, and magic of molecules. Berlin: Springer Verlag; 2007. p. 169–94.

    Google Scholar 

  2. Boldyreva EV, Drebushchak VA, Drebushchak TN, Paukov IE, Kovalevskaya YuA, Shutova ES. Polymorphism of glycine. Thermodynamic aspects. Part 1. Relative stability of the polymorphs. J Therm Anal Calorim. 2003;73:409–18.

    Article  CAS  Google Scholar 

  3. Boldyreva EV, Drebushchak VA, Drebushchak TN, Paukov IE, Kovalevskaya YuA, Shutova EC. Polymorphism of glycine. Thermodynamic aspects. Part 2. Polymorphic transitions. J Therm Anal Calorim. 2003;73:419–28.

    Article  CAS  Google Scholar 

  4. Drebushchak VA, Kovalevskaya YuA, Paukov IE, Boldyreva EV. Low temperature heat capacity of α and γ polymorph of glycine. J Therm Anal Calorim. 2003;74:109–20.

    Article  CAS  Google Scholar 

  5. Drebushchak VA, Boldyreva EV, Kovalevskaya YuA, Paukov IE, Drebushchak TN. Low-temperature heat capacity of β-glycine and a phase transition at 252 K. J Therm Anal Calorim. 2005;79:65–70.

    Article  CAS  Google Scholar 

  6. Drebushchak VA, Kovalevskaya YuA, Paukov IE, Boldyreva EV. Heat capacity of L- and DL-serine in a temperature range of 5.5 to 300 K. J Therm Anal Calorim. 2007;89:649–54.

    Article  CAS  Google Scholar 

  7. Paukov IE, Kovalevskaya YuA, Drebushchak VA, Drebushchak TN, Boldyreva EV. An extended phase transition in crystalline L-cysteine near 70 K. J Phys Chem B. 2007;111(31):9186–8.

    Article  CAS  Google Scholar 

  8. Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of L-cysteine. J Therm Anal Calorim. 2008;93:423–8.

    Article  CAS  Google Scholar 

  9. Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of DL-cysteine. J Therm Anal Calorim. 2009 (in press).

  10. Drebushchak VA, Kovalevskaya YuA, Paukov IE, Boldyreva EV. Heat capacity of α-glycylglycine in a temperature range of 6 to 440 K: comparison with glycines. J Therm Anal Calorim. 2006;85:485–90.

    Article  CAS  Google Scholar 

  11. Drebushchak VA, Kovalevskaya YuA, Paukov IE, Boldyreva EV. Low-temperature heat capacity of diglycylglycine: some summaries and forecasts for the heat capacity of amino acids and peptides. J Therm Anal Calorim. 2008;93:865–9.

    Article  CAS  Google Scholar 

  12. Girnyk I, Mys O, Gridyakina G, Dovbeshko G, Vlokh R. Phase transition in β-alanine amino acid crystals. J Phys Opt. 2003;4:144–6.

    Article  Google Scholar 

  13. Badelin VG, Kulikov OV, Vatagin VS, Udzig E, Zielenkiewich A, Zielenkiewich W, et al. Physico-chemical properties of peptides and their solutions. Thermochim Acta. 1990;169:81–93.

    Article  CAS  Google Scholar 

  14. Papavinasam E, Natarajan S, Shivaprakash NC. Reinvestigation of the crystal structure of β-alanine. Int J Peptide Protein Res. 1986;28:525–7.

    CAS  Google Scholar 

  15. Paukov IE, Kovalevskaya YuA, Rahmoun NS, Geiger CA. A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91:35–8.

    Article  CAS  Google Scholar 

  16. Huffman HM. Thermal data. XIV. The heat capacities and entropies of some compounds having the peptide bond. J Am Chem Soc. 1941;63:688–9.

    Article  CAS  Google Scholar 

  17. Hutchens JO, Cole AG, Stout JW. Heat capacities from 11 to 305 K, entropies and free energy of formation of glycylglycine. J Biol Chem. 1969;244:33–35.

    CAS  Google Scholar 

  18. Parks GS, Huffman HM, Barmore M. Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J Am Chem Soc. 1933;55:2733–40.

    Article  CAS  Google Scholar 

  19. Hutchens JO, Cole AG, Stout JW. Heat capacities from 11 to 305 K and entropies of L-alanine and glycine. J Am Chem Soc. 1960;82:4813–5.

    Article  CAS  Google Scholar 

  20. Spink CH, Wadsö I. Thermochemistry of solutions of biochemical model compounds. 4. The partial molar heat capacities of some amino acids in aqueous solution. J Chem Thermodyn. 1975;7:561–72.

    Article  CAS  Google Scholar 

  21. Skouilika S, Sabbah R. Thermodynamics of nitrogen compounds. X. Thermochemical study of some ω-amino acids. Thermochim Acta. 1983;61:203–14.

    Article  Google Scholar 

  22. Parks GS, Huffman HM. The free energies of some organic compounds. New York: Reinhold; 1932, pp. 50, 251.

Download references

Acknowledgments

The study was supported by an Interdisciplinary Integration Project of the SB RAS № 49, a grant from RFBR (05-03-32468), and BRHE grants NO-008-XI and RUX0-008-NO-06. The authors acknowledge the assistance of Mr. A. Zhilin with the preparation of the inclusions-free sample and of Dr. T.N. Drebushchak—with its X-ray diffraction characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Boldyreva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukov, I.E., Kovalevskaya, Y.A., Boldyreva, E.V. et al. Heat capacity of β-alanine in a temperature range between 6 and 300 K. J Therm Anal Calorim 98, 873–876 (2009). https://doi.org/10.1007/s10973-009-0104-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0104-6

Keywords

Navigation