Skip to main content
Log in

Curing kinetics of lignin-novolac phenolic resins using non-isothermal methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The curing kinetics of lignin-novolac and methylolated lignin-novolac resins were studied using non-isothermal methods employing differential scanning calorimetry (DSC) at different heating rates. The Belichmeier, Ozawa and Kissinger methods were applied, which give the kinetic parameters of the curing process studied. In addition, the model-fitting Coats-Redfern method was used to analyze the experimental data. The kinetic study evaluated the effect of the lignin (softwood ammonium lignosulfonate), methylolated or not, on the resin curing process. Results for lignin-novolac and modified lignin-novolac resins were compared with a commercial novolac resin as a reference. When lignosulfonate is modified by methylolation and is incorporated in the novolac resin, there is an important reduction in activation energy. The lignin-novolac showed slightly higher values of activation energy than methylolated-lignin resins, but lower values than commercial resins. This behavior has been attributed to the extra methyol groups introduced by lignosulfonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Forss KG, Fuhrmann A. Finnish plywood, particleboard, and fireboard made with a lignin-base adhesive. Forest Prod J. 1979;29(7):39–43.

    CAS  Google Scholar 

  2. Vázquez G, González-Álvarez J, López-Suevos F, Freire S, Antorrena G. Curing kinetics of tannin–phenol–formaldehyde adhesives as determined by DSC. J Therm Anal Calorim. 2002;70(1):19–28.

    Article  Google Scholar 

  3. Calvé LR, Shields JA, Blanchette L, Fréchet JMJ. A practical lignin-based adhesive for waferboard/OSB. Forest Prod J. 1988;38(5):15–20.

    Google Scholar 

  4. Alonso MV, Rodríguez JJ, Oliet M, Rodríguez F, García J, Gilarranz MA. Characterization and structural modification of ammonic lignosulfonate by methylolation. J Appl Polym Sci. 2001;82(11):2661–8.

    Article  CAS  Google Scholar 

  5. Allan GG, Dalan JA, Foster NC. Modification of lignins for use in phenolic resins. In: Adhesives from renewable resources. American Chemical Society, Symposium Series; 1989.

  6. Gardziella A, Pilato LA, Knop A. Phenolic resins: chemistry, applications, standardization, safety and ecology. New York: Springer-Verlag; 2000.

    Google Scholar 

  7. Lu MG, Shim MJ, Kim SW. Curing behavior of an unsaturated polyester system analyzed by Avrami equation. Thermochim Acta. 1998;323(1–2):37–42.

    Article  CAS  Google Scholar 

  8. Park B-D, Riedl B, Hsu EW, Shields J. Differential scanning calorimetry of phenol-formaldehyde resins cure-accelerated by carbonates. Polymer. 1999;40(7):1689−99.

    Article  CAS  Google Scholar 

  9. Alonso MV, Oliet M, Pérez JM, Rodríguez F, Echeverría J. Determination of curing kinetic parameters of lignin–phenol–formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochim Acta. 2004;419(1–2):161–7.

    Article  CAS  Google Scholar 

  10. Belichmeier JA, Cammenga HK, Schneider PB, Steer AG. A simple method for determining activation energies of organic reactions from DSC curves. Termochim Acta. 1998;310(1–2):147–51.

    Article  CAS  Google Scholar 

  11. Ozawa T. A new method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(1):1881–6.

    Article  CAS  Google Scholar 

  12. Kissinger HE. Reaction kinetics in diferential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  13. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  14. Maciejewski M. Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project – the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355(1–2):145–54.

    Article  CAS  Google Scholar 

  15. Carotenuto G, Nicolais L. Kinetic study of phenolic resin cure by IR spectroscopy. J Appl Polym Sci. 1999;74(11):2703–15.

    Article  CAS  Google Scholar 

  16. He G, Riedl B, Aït-Kadi A. Curing process of powdered phenol–formaldehyde resol resins and the role of water in the curing systems. J Appl Polym Sci. 2003;89(5):1371–8.

    Article  CAS  Google Scholar 

  17. Wang M, Wei L, Zhao T. Cure study of addition-cure-type and condensation-addition-type phenolic resins. Eur Polym J. 2005;41(5):903–12.

    Article  CAS  Google Scholar 

  18. Alonso M, Oliet M, García J, Rodríguez F, Echeverría J. Gelation and isoconversional kinetic analysis of lignin-phenol-formaldehyde resol resins cure. Chem Eng J. 2006;122(3):159–66.

    Article  CAS  Google Scholar 

  19. Alonso M, Oliet M, García J, Rodríguez F, Echeverría J. Transformation of dynamic DSC results into isothermal data for the curing kinetics study of the resol resins. J Therm Anal Calorim. 2006;86(3):797–802.

    Article  CAS  Google Scholar 

  20. Vázquez G, López-Suevos F, González-Alvarez J, Antorrena G. Curing process of phenol–urea–formaldehyde–tannin (PUFT) adhesives. J Therm Anal Calorim. 2005;82(1):143–9.

    Article  Google Scholar 

  21. Gabilondo N, López M, Ramos J, Echeverría J, Mondragon I. Curing kinetics of amine and sodium hydroxide catalyzed phenol–formaldehyde resins. J Therm Anal Calorim. 2007;90(1):229–36.

    Article  CAS  Google Scholar 

  22. Siimer K, Kaljuvee T, Christjanson P, Pehk T, Saks I. Effect of alkylresorcinols on curing behaviour of phenol–formaldehyde resol resin. J Therm Anal Calorim. 2008;91(2):365–73.

    Article  CAS  Google Scholar 

  23. Tejado A, Kortaberria G, Labidi J, Echeverria JM, Mondragon I. Isoconversional kinetic analysis of novolac-type lignophenolic resins cure. Thermochim Acta. 2008;471(1–2):80–5.

    Article  CAS  Google Scholar 

  24. Pérez JM, Rodríguez F, Alonso MV, Oliet M, Echeverría JM. Characterization of a novolac resin substituting phenol by ammonium lignosulfonate as filler or extender. Bioresources. 2007;2(2):270–83.

    Google Scholar 

  25. Ysbrandy RE, Sanderson RD, Gerischer GFR. Adhesives from autohydrolysis bagasse lignin. Part I. Holzforschung. Holzforschung. 1992;46(3):249–52.

    Article  CAS  Google Scholar 

  26. Martin JL, Salla JM. Models of reaction commonly employed in the curing of thermosetting resins. Thermochim Acta. 1992;207:279–304.

    Article  CAS  Google Scholar 

  27. Bindu RL, Reghunadhan CP, Ninan KN. Phenolic resins bearing maleimide groups: synthesis and characterization. J Polym Sci Pol Chem. 2000;38(3):641–52.

    Article  CAS  Google Scholar 

  28. Krajnc M, Golob J, Podraj J, Barboric F. A kinetic model of resol curing in the production of industrial laminates. Acta Chim Slov. 2000;47:99–109.

    CAS  Google Scholar 

  29. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76.

    Article  CAS  Google Scholar 

  30. Catalani A, Bonicelli MG. Kinetics of the curing reaction of a diglycidyl ether of bisphenol A with a modified polyamine. Thermochim Acta. 2005;438(1–2):126–9.

    Article  CAS  Google Scholar 

  31. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature.1965;207(4994):290–1.

    Article  CAS  Google Scholar 

  32. Murray P, White J. Kinetic of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans Brot Ceram Soc. 1955;54:204–38.

    CAS  Google Scholar 

  33. Weiling P. Development de noeveaux adhesifs bases sur des derives de la lignine. UMI Dissertation Service; 1994.

  34. Tejado A, Kortaberria G, Peña J, Labidi J, Echeverria JM, Mondragon I. Isocyanate curing of novolac-type ligno–phenol–formaldehyde resins. Ind Crops Prod. 2008;27(2):208–13.

    Article  CAS  Google Scholar 

  35. Matuana LM, Riedl B, Barry AO. Caracterisation cinetique par analyse enthalpique differentielle des resines phenol–formaldehyde a base de lignosulfonates. Eur Polym J. 1993;29(4):483–90.

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  37. Agrawal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng. 2000;A277(1–2):77–82.

    CAS  Google Scholar 

  38. de Medeiros ES, Agnelli JAM, Joseph K, de Carvalho LH, Mattoso LHC. Curing behavior of a novolac-type phenolic resin analyzed by differential scanning calorimetry. J Appl Polym Sci. 2003;90(6):1678–82.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of “Ministerio de Ciencia y Tecnología” (projects CTQ2004-02031/PPQ and CTQ2007-64071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Oliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, J.M., Rodríguez, F., Alonso, M.V. et al. Curing kinetics of lignin-novolac phenolic resins using non-isothermal methods. J Therm Anal Calorim 97, 979–985 (2009). https://doi.org/10.1007/s10973-009-0103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0103-7

Keywords

Navigation