Skip to main content
Log in

Water’s surface tension and cavity thermodynamics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The relationship between cavity thermodynamics in water and air-water surface tension is investigated in the present study. The effective hard sphere diameter of water molecules over a large temperature range is estimated from the experimental air-water surface tension, and cavity thermodynamics is calculated by means of classic scaled particle theory. The work of cavity creation proves to be a decreasing function of temperature and the cavity entropy change is a positive, practically constant, quantity, regardless of the cavity diameter, in marked contrast with well established theoretical and computer simulation results. This finding suggests that the relationship between cavity thermodynamics and surface tension is not a simple matter in the case of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Blokzijl and J. B. F. N. Engberts, Angew. Chem., Int. Ed. Engl., 32 (1993) 1545.

    Article  Google Scholar 

  2. L. R. Pratt, Annu. Rev. Phys. Chem., 53 (2002) 409.

    Article  CAS  Google Scholar 

  3. G. Graziano, J. Chem. Soc., Faraday Trans., 94 (1998) 3345.

    Article  CAS  Google Scholar 

  4. G. Graziano, Can. J. Chem., 80 (2002) 401.

    Article  CAS  Google Scholar 

  5. G. Graziano, J. Phys. Chem. B, 109 (2005) 981.

    Article  CAS  Google Scholar 

  6. S. V. Kurkov, G. L. Perlovich and W. Zielenkiewicz, J. Therm. Anal. Cal., 83 (2006) 549.

    Article  CAS  Google Scholar 

  7. B. Lee, J. Chem. Phys., 83 (1985) 2421.

    Article  CAS  Google Scholar 

  8. A. Pohorille and L. R. Pratt, J. Am. Chem. Soc., 112 (1990) 5066.

    Article  CAS  Google Scholar 

  9. I. Tomàs-Oliveira and S. J. Wodak, J. Chem. Phys., 111 (1999) 8576.

    Article  Google Scholar 

  10. H. Reiss, H. L. Frisch and J. L. Lebowitz, J. Chem. Phys., 31 (1959) 369.

    Article  CAS  Google Scholar 

  11. H. Reiss, Adv. Chem. Phys., 9 (1966) 1.

    Article  Google Scholar 

  12. R. A. Pierotti, J. Phys. Chem., 67 (1963) 1840.

    Article  CAS  Google Scholar 

  13. R. A. Pierotti, J. Phys. Chem., 69 (1965) 281.

    Article  CAS  Google Scholar 

  14. S. W. Mayer, J. Phys. Chem., 67 (1963) 2160.

    Article  CAS  Google Scholar 

  15. R. L. Baldwin, Biophys. J., 71 (1996) 2056.

    Article  CAS  Google Scholar 

  16. H. S. Ashbaugh and M. E. Paulaitis, J. Am. Chem. Soc., 123 (2001) 10721.

    Article  CAS  Google Scholar 

  17. D. Chandler, Nature, 437 (2005) 640.

    Article  CAS  Google Scholar 

  18. H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys., 78 (2006) 159.

    Article  CAS  Google Scholar 

  19. R. A. Pierotti, Chem. Rev., 76 (1976) 717.

    Article  CAS  Google Scholar 

  20. F. H. Stillinger, J. Solution Chem., 2 (1973) 141.

    Article  CAS  Google Scholar 

  21. G. S. Kell, J. Chem. Eng. Data, 20 (1975) 97.

    Article  CAS  Google Scholar 

  22. Handbook of Chemistry and Physics, D. R. Lide, Editor, 77th edition, CRC Press, Boca Raton, FL, 1996.

    Google Scholar 

  23. K. Soda, J. Phys. Soc. Jpn., 58 (1989) 4643.

    Article  CAS  Google Scholar 

  24. G. Graziano and B. Lee, Biophys. Chem., 105 (2003) 241.

    Article  CAS  Google Scholar 

  25. E. Wilhelm, J. Chem. Phys., 58 (1973) 3558.

    Article  CAS  Google Scholar 

  26. B. Guillot and Y. Guissani, J. Chem. Phys., 99 (1993) 8075.

    Article  CAS  Google Scholar 

  27. S. Garde, G. Hummer, A. E. Garcia, M. E. Paulaitis and L. R. Pratt, Phys. Rev. Lett., 77 (1996) 4966.

    Article  CAS  Google Scholar 

  28. G. Hummer, S. Garde, A. E. Garcia, A. Pohorille and L. R. Pratt, Proc. Natl. Acad. Sci., USA, 93 (1996) 8951.

    Article  CAS  Google Scholar 

  29. D. M. Huang and D. Chandler, Proc. Natl. Acad. Sci., USA, 97 (2000) 8324.

    Article  CAS  Google Scholar 

  30. K. Lum, D. Chandler and J. D. Weeks, J. Phys. Chem. B, 103 (1999) 4570.

    Article  CAS  Google Scholar 

  31. S. Garde and H. S. Ashbaugh, J. Chem. Phys., 115 (2001) 977.

    Article  CAS  Google Scholar 

  32. H. S. Ashbaugh, T. M. Truskett and P. G. Debenedetti, J. Chem. Phys., 116 (2002) 2907.

    Article  CAS  Google Scholar 

  33. G. Graziano, Phys. Chem. Chem. Phys., 6 (2004) 406.

    Article  CAS  Google Scholar 

  34. R. L. Baldwin, Proc. Natl. Acad. Sci., USA, 83 (1986) 8069.

    Article  CAS  Google Scholar 

  35. K. P. Murphy, P. L. Privalov and S. J. Gill, Science, 247 (1990) 559.

    Article  CAS  Google Scholar 

  36. B. Lee, Proc. Natl. Acad. Sci., USA, 88 (1991) 5154.

    Article  CAS  Google Scholar 

  37. G. Graziano, J. Phys. Chem. B, 109 (2005) 12160.

    Article  CAS  Google Scholar 

  38. R. A. Pierotti, J. Phys. Chem., 71 (1967) 2366.

    Article  CAS  Google Scholar 

  39. A. Ben-Naim and H. L. Friedman, J. Phys. Chem., 71 (1967) 448.

    Article  CAS  Google Scholar 

  40. T. L. Hill, An Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, 1960.

    Google Scholar 

  41. A. R. Henn, Biophys. Chem., 105 (2003) 533.

    Article  CAS  Google Scholar 

  42. G. Graziano, J. Phys. Chem. B, 110 (2006) 11421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Graziano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graziano, G. Water’s surface tension and cavity thermodynamics. J Therm Anal Calorim 91, 73–77 (2008). https://doi.org/10.1007/s10973-007-8535-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8535-4

Keywords

Navigation