Skip to main content
Log in

The influences of “gas” viscosity on water entry of hydrophobic spheres

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

An extremely thin gas film was found between a sphere and a free surface when the sphere impacted onto a water pool. That might influence the generation and evolution of water entry cavity. However, it is quite difficult to be captured through normal numerical and experimental tests. In this work, by using a finite element method we investigate the water entry of a hydrophobic sphere with gas viscosity artificially increased. The air film rupture in the early stage, contact line dynamics on a curved solid surface, and air pocket formation are investigated. The numerical results reveal that the lifetime of the gas film can be predicted by a viscous squeezing flow model qualitatively well. That relates to the fact that the gas film is much thinner than the diameter of the sphere, even when the gas viscosity is 100 times as large as the liquid one. However, inviscid flow can be found in the most part of the liquid bulk. The free surface profile (or the gas film profile) is then determined by the impact speed, namely the Weber number. More importantly, after the “gas” film ruptures at the bottom of the sphere, a contact line is generated. The contact line retracts along the sphere's surface, and the retracting speed fulfils \( U_{MCL}\propto T^{-1/2}\) law generally. This implies that the retracting process of the gas film is dominated by the inertia-capillary balance, rather than simply by the visco-capillary.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Worthington, R.S. Cole, Philos. Trans. R. Soc. London, Ser. A 189, 137 (1897)

    Article  ADS  Google Scholar 

  2. A.M. Worthington, R.S. Cole, Philos. Trans. R. Soc. London, Ser. A 194, 175 (1900)

    Article  ADS  Google Scholar 

  3. A. May, J. Appl. Phys. 22, 1219 (1951)

    Article  ADS  Google Scholar 

  4. A. May, J. Appl. Phys. 23, 1362 (1952)

    Article  ADS  Google Scholar 

  5. V. Duclaux, F. Caillé, C. Duez, C. Ybert, L. Bocquet, C. Clanet, J. Fluid Mech. 591, 1 (2007)

    Article  ADS  Google Scholar 

  6. J. Aristoff, J.W.M. Bush, J. Fluid Mech. 619, 45 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. C. Duez, C. Ybert, C. Clanet, L. Bocquet, Nat. Phys. 3, 180 (2007)

    Article  Google Scholar 

  8. M.H. Zhao, X.P. Chen, Q. Wang, Sci. Rep. 4, 5376 (2014)

    Article  Google Scholar 

  9. D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008)

    Article  ADS  Google Scholar 

  10. F.C. Yang, X.P. Chen, P. Yue, Phys. Fluids 30, 012106 (2018)

    Article  ADS  Google Scholar 

  11. H. Ding, B.Q. Chen, H.R. Liu, C.Y. Zhang, P. Gao, X.Y. Lu, J. Fluid Mech. 783, 504 (2015)

    Article  ADS  Google Scholar 

  12. M. Do-Quang, G. Amberg, Phys. Fluids 21, 022102 (2009)

    Article  ADS  Google Scholar 

  13. M. Do-Quang, G. Amberg, Math. Comput. Simul. 80, 1664 (2010)

    Article  Google Scholar 

  14. H. Yan, Y. Liu, J. Kominarczuk, D.K.P. Yue, J. Fluid Mech. 641, 441 (2009)

    Article  ADS  Google Scholar 

  15. M. Greenhow, Appl. Ocean Res. 10, 191 (1988)

    Article  Google Scholar 

  16. S. Gaudet, Phys. Fluids 10, 2489 (1998)

    Article  ADS  Google Scholar 

  17. J.O. Marston, I.U. Vakarelski, S.T. Throddsen, J. Fluid Mech. 680, 660 (2011)

    Article  ADS  Google Scholar 

  18. A.L. Biance, C. Clanet, D. Quéré, Phys. Rev. E 69, 016301 (2004)

    Article  ADS  Google Scholar 

  19. T. Tran, H. de Maleprade, C. Sun, D. Lohse, J. Fluid Mech. 726, R3 (2013)

    Article  ADS  Google Scholar 

  20. K. Langley, E.Q. Li, S.T. Thoroddsen, J. Fluid Mech. 813, 647 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Josserand, S. Thoroddsen, Annu. Rev. Fluid Mech. 48, 365 (2016)

    Article  ADS  Google Scholar 

  22. B.C.W. Tan, J.H.A. Vlaskamp, P. Denissenko, P.J. Thomas, J. Fluid Mech. 790, 33 (2016)

    Article  ADS  Google Scholar 

  23. P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Yue, C. Zhou, J.J. Feng, J. Fluid Mech. 645, 279 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Huh, S.G. Mason, J. Colloid Interface Sci. 60, 11 (1977)

    Article  ADS  Google Scholar 

  27. J.M. Aristoff, T.T. Truscott, A.H. Techet, J.W.M. Bush, Phys. Fluids 22, 032102 (2010)

    Article  ADS  Google Scholar 

  28. A.A. Korobkin, V.V. Pukhnach, Annu. Rev. Fluid Mech. 20, 159 (1998)

    Article  ADS  Google Scholar 

  29. D. Battistin, A. Iafrati, J. Fluids Struct. 17, 643 (2003)

    Article  ADS  Google Scholar 

  30. A. Iafrati, A.A. Korobkin, Phys. Fluids 16, 2214 (2004)

    Article  ADS  Google Scholar 

  31. C. Geuzaine, J.F. Remacle, Int. J. Numer. Methods Eng. 79, 1309 (2009)

    Article  Google Scholar 

  32. X. Chen, S. Mandre, J.J. Feng, Phys. Fluids 18, 092103 (2006)

    Article  ADS  Google Scholar 

  33. A.G. Petrov, I.S. Kharlamova, Eur. J. Mech. B/Fluids 48, 40 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. D.Y.C. Chan, E. Klaseboer, R. Manica, Soft Matter 7, 2235 (2011)

    Article  ADS  Google Scholar 

  35. J. Eggers, J.R. Lister, H.A. Stone, J. Fluid Mech. 401, 293 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  36. T.S. Chan, S. Srivastava, A. Marchand, B. Andreotti, L. Biferale, F. Toschi, J.H. Snoeije, Phys. Fluids 25, 074105 (2013)

    Article  ADS  Google Scholar 

  37. M. Liu, X.P. Chen, Eur. Phys. J. E 41, 92 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Peng Chen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, FC., Chen, XP. & Yue, P. The influences of “gas” viscosity on water entry of hydrophobic spheres. Eur. Phys. J. E 42, 34 (2019). https://doi.org/10.1140/epje/i2019-11795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11795-9

Keywords

Navigation